Читать книгу Genome Editing in Drug Discovery - Группа авторов - Страница 19
References
Оглавление1 Acharya, S., Mishra, A., Paul, D. et al. (2019). Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc. Natl. Acad. Sci. U. S. A. 116: 20959–20968.
2 Anzalone, A.V., Randolph, P.B., Davis, J.R. et al. (2019). Search‐and‐replace genome editing without double‐strand breaks or donor DNA. Nature 576: 149–157.
3 Batta, A., Kalra, B.S., and Khirasaria, R. (2020). Trends in FDA drug approvals over last 2 decades: an observational study. J Family Med Prim Care 9: 105–114.
4 Behan, F.M., Iorio, F., Picco, G. et al. (2019). Prioritization of cancer therapeutic targets using CRISPR‐Cas9 screens. Nature 568: 511–516.
5 Bibikova, M., Carroll, D., Segal, D.J. et al. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21: 289–297.
6 Boch, J., Scholze, H., Schornack, S. et al. (2009). Breaking the code of DNA binding specificity of TAL‐type III effectors. Science 326: 1509–1512.
7 Chen, J.S., Ma, E., Harrington, L.B. et al. (2018). CRISPR‐Cas12a target binding unleashes indiscriminate single‐stranded DNase activity. Science 360: 436–439.
8 Cong, L., Ran, F.A., Cox, D. et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
9 Cui, Y., Cheng, X., Chen, Q. et al. (2021). CRISP‐view: a database of functional genetic screens spanning multiple phenotypes. Nucleic. Acids. Res. 49 (D1): D848–D854.
10 Doench, J.G. (2018). Am I ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19: 67–80.
11 Fellmann, C., Gowen, B.G., Lin, P.C. et al. (2017). Cornerstones of CRISPR‐Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16: 89–100.
12 Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. (2014). Genome‐scale CRISPR‐mediated control of gene repression and activation. Cell 159: 647–661.
13 Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J. et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360: 439–444.
14 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.
15 Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chem. Biol. 13: 406–416.
16 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93: 1156–1160.
17 Lancaster, M.A., Renner, M., Martin, C.A. et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501: 373–379.
18 Liu, X., Zhang, Y., Cheng, C. et al. (2017). CRISPR‐Cas9‐mediated multiplex gene editing in CAR‐T cells. Cell Res. 27: 154–157.
19 Lundin, A., Porritt, M.J., Jaiswal, H. et al. (2020). Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre‐clinical cancer drug discovery. Nat. Commun. 11: 4903.
20 Mali, P., Yang, L., Esvelt, K.M. et al. (2013). RNA‐guided human genome engineering via Cas9. Science 339: 823–826.
21 Morgan, P., Brown, D.G., Lennard, S. et al. (2018). Impact of a five‐dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 17: 167–181.
22 Moscou, M.J. and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.
23 Myhrvold, C., Freije, C.A., Gootenberg, J.S. et al. (2018). Field‐deployable viral diagnostics using CRISPR‐Cas13. Science 360: 444–448.
24 Rees, H.A. and Liu, D.R. (2018). Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19: 770–788.
25 Vamathevan, J., Clark, D., Czodrowski, P. et al. (2019). Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18: 463–477.
26 Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA‐guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338.