Читать книгу Genome Editing in Drug Discovery - Группа авторов - Страница 74
References
Оглавление1 Acharya, S., Mishra, A., Paul, D. et al. (2019). Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc. Natl. Acad. Sci. U. S. A. 116: 20959–20968.
2 Aguirre, A.J., Meyers, R.M., Weir, B.A. et al. (2016). Genomic copy number dictates a gene‐independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6: 914–929.
3 Behan, F.M., Iorio, F., Picco, G. et al. (2019). Prioritization of cancer therapeutic targets using CRISPR‐Cas9 screens. Nature 568: 511–516.
4 Ben‐David, U., Siranosian, B., Ha, G. et al. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560: 325–330.
5 Boettcher, M., Tian, R., Blau, J.A. et al. (2018). Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36: 170–178.
6 Borys, S.M. and Younger, S.T. (2020). Identification of functional regulatory elements in the human genome using pooled CRISPR screens. BMC Genomics 21: 107.
7 Bradford, J. and Perrin, D. (2019a). A benchmark of computational CRISPR‐Cas9 guide design methods. PLoS Comput. Biol. 15: e1007274.
8 Bradford, J. and Perrin, D. (2019b). Improving CRISPR guide design with consensus approaches. BMC Genomics 20: 931.
9 Braun, C.J., Bruno, P.M., Horlbeck, M.A. et al. (2016). Versatile in vivo regulation of tumor phenotypes by dCas9‐mediated transcriptional perturbation. Proc. Natl. Acad. Sci. U. S. A. 113: E3892–E3900.
10 Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42: e168.
11 Chen, S., Sanjana, N.E., Zheng, K. et al. (2015). Genome‐wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 1246–1260.
12 Chen, W.H., Lu, G., Chen, X. et al. (2017). OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 45: D940–D944.
13 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Res. 24: 132–141.
14 Chow, R.D., Wang, G., Ye, L. et al. (2019). in vivo profiling of metastatic double knockouts through CRISPR‐Cpf1 screens. Nat. Methods 16: 405–408.
15 Cohen, J. (2019). CRISPR patent fight revived. Science 365: 15–16.
16 De Caneva, A., Porro, F., Bortolussi, G. et al. (2019). Coupling AAV‐mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5.
17 De Groot, R., Luthi, J., Lindsay, H. et al. (2018). Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens. Mol. Syst. Biol. 14: e8064.
18 Doench, J.G. (2018). Am i ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19: 67–80.
19 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.
20 Dong, M.B., Wang, G., Chow, R.D. et al. (2019). Systematic immunotherapy target discovery using genome‐scale in vivo CRISPR screens in CD8 T cells. Cell 178: 1189–1204.e23.
21 Ebright, R.Y., Lee, S., Wittner, B.S. et al. (2020). Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367: 1468–1473.
22 Erard, N., Knott, S.R.V., and Hannon, G.J. (2017). A CRISPR resource for individual, combinatorial, or multiplexed gene knockout. Mol. Cell 67: 348–354. e4.
23 Feldman, D., Singh, A., Schmid‐Burgk, J.L. et al. (2019). Optical pooled screens in human cells. Cell 179: 787–799. e17.
24 Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G. (2019). Guide RNA modification as a way to improve CRISPR/Cas9‐based genome‐editing systems. Biochimie 167: 49–60.
25 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nat. Biotechnol. 31: 822–826.
26 Ghandi, M., Huang, F.W., Jane‐Valbuena, J. et al. (2019). Next‐generation characterization of the cancer cell line encyclopedia. Nature 569: 503–508.
27 Giladi, A., Paul, F., Herzog, Y. et al. (2018). Single‐cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20: 836–846.
28 Ginn, S.L., Amaya, A.K., Liao, S.H.Y. et al. (2020). Efficient in vivo editing of OTC‐deficient patient‐derived primary human hepatocytes. JHEP Rep 2: 100065.
29 Goncalves, E., Thomas, M., Behan, F.M. et al. (2020). Minimal genome‐wide human CRISPR‐Cas9 library. bioRxiv https://genomebiology.biomedcentral.com/articles/10.1186/s13059‐021‐02268‐4.
30 Hart, T., Chandrashekhar, M., Aregger, M. et al. (2015). High‐resolution CRISPR screens reveal fitness genes and genotype‐specific cancer liabilities. Cell 163: 1515–1526.
31 Horlbeck, M.A., Xu, A., Wang, M. et al. (2018). Mapping the genetic landscape of human cells. Cell 174: 953–967. e22.
32 Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832.
33 Jaitin, D. A., Weiner, A., Yofe, I., Lara‐Astiaso, D., Keren‐Shaul, H., David, E., Salame, T. M., Tanay, A., Van Oudenaarden, A. & Amit, I. 2016. Dissecting immune circuits by linking CRISPR‐pooled screens with single‐cell RNA‐Seq. Cell, 167, 1883–1896 e15.
34 Joberty, G., Falth‐Savitski, M., Paulmann, M. et al. (2020). A tandem guide RNA‐based strategy for efficient CRISPR gene editing of cell populations with low heterogeneity of edited alleles. The CRISPR J. https://doi.org/10.1089/crispr.2019.0064.
35 Jost, M., Chen, Y., Gilbert, L.A. et al. (2017). Combined CRISPRi/a‐based chemical genetic screens reveal that Rigosertib is a microtubule‐destabilizing agent. Mol. Cell 68: 210–223. e6.
36 Kamens, J. (2015). The addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res. 43: D1152–D1157.
37 Katigbak, A., Cencic, R., Robert, F. et al. (2016). A CRISPR/Cas9 functional screen identifies rare tumor suppressors. Sci. Rep. 6: 38968.
38 Kim, S., Kim, D., Cho, S.W. et al. (2014). Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24: 1012–1019.
39 Kim, D., Luk, K., Wolfe, S.A., and Kim, J.S. (2019). Evaluating and enhancing target specificity of gene‐editing nucleases and deaminases. Annu. Rev. Biochem. 88: 191–220.
40 Kimberland, M.L., Hou, W., Alfonso‐Pecchio, A. et al. (2018). Strategies for controlling CRISPR/Cas9 off‐target effects and biological variations in mammalian genome editing experiments. J. Biotechnol. 284: 91–101.
41 Kodama, M., Kodama, T., Newberg, J.Y. et al. (2017). in vivo loss‐of‐function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 114: E7301–E7310.
42 Labun, K., Montague, T.G., Krause, M. et al. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47: W171–W174.
43 Lafleur, M.W., Nguyen, T.H., Coxe, M.A. et al. (2019). A CRISPR‐Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10: 1668.
44 Le Sage, C., Lawo, S., and Cross, B.C.S. (2020). CRISPR: a screener's guide. SLAS Discov 25: 233–240.
45 Li, K., Liu, Y., Cao, H. et al. (2020). Interrogation of enhancer function by enhancer‐targeting CRISPR epigenetic editing. Nat. Commun. 11: 485.
46 Liang, X., Potter, J., Kumar, S. et al. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208: 44–53.
47 Lin, Y., Cradick, T.J., Brown, M.T. et al. (2014). CRISPR/Cas9 systems have off‐target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42: 7473–7485.
48 Liu, G., Zhang, Y., and Zhang, T. (2020). Computational approaches for effective CRISPR guide RNA design and evaluation. Comput. Struct. Biotechnol. J. 18: 35–44.
49 Lu, Q., Livi, G.P., Modha, S. et al. (2017). Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opin. Drug Discovery 12: 541–552.
50 Manguso, R.T., Pope, H.W., Zimmer, M.D. et al. (2017). in vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547: 413–418.
51 Mans, R., Van Rossum, H.M., Wijsman, M. et al. (2015). CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15.
52 Martin‐Laffon, J., Kuntz, M., and Ricroch, A.E. (2019). Worldwide CRISPR patent landscape shows strong geographical biases. Nat. Biotechnol. 37: 613–620.
53 Martufi, M., Good, R.B., Rapiteanu, R. et al. (2019). Single‐step, high‐efficiency CRISPR‐Cas9 genome editing in primary human disease‐derived fibroblasts. CRISPR J 2: 31–40.
54 Metzakopian, E., Strong, A., Iyer, V. et al. (2017). Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries. Sci. Rep. 7: 2244.
55 Mou, H., Smith, J.L., Peng, L. et al. (2017). CRISPR/Cas9‐mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 18: 108.
56 Munoz, D.M., Cassiani, P.J., Li, L. et al. (2016). CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false‐positive hits for highly amplified genomic regions. Cancer Discov. 6: 900–913.
57 Najm, F.J., Strand, C., Donovan, K.F. et al. (2018). Orthologous CRISPR‐Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36: 179–189.
58 Oughtred, R., Stark, C., Breitkreutz, B.J. et al. (2019). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47: D529–D541.
59 Pattanayak, V., Lin, S., Guilinger, J.P. et al. (2013). High‐throughput profiling of off‐target DNA cleavage reveals RNA‐programmed Cas9 nuclease specificity. Nat. Biotechnol. 31: 839–843.
60 Pichler, F.B. and Turner, S.J. (2007). The power and pitfalls of outsourcing. Nat. Biotechnol. 25: 1093–1096.
61 Popp, M.W. and Maquat, L.E. (2016). Leveraging rules of nonsense‐mediated mRNA decay for genome engineering and personalized medicine. Cell 165: 1319–1322.
62 Qiu, P., Shandilya, H., D'alessio, J.M. et al. (2004). Mutation detection using Surveyor nuclease. BioTechniques 36: 702–707.
63 Ran, F.A., Cong, L., Yan, W.X. et al. (2015). in vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186–191.
64 Rosenbluh, J., Xu, H., Harrington, W. et al. (2017). Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8: 15403.
65 Safari, F., Zare, K., Negahdaripour, M. et al. (2019). CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 9: 36.
66 Sanson, K.R., Hanna, R.E., Hegde, M. et al. (2018). Optimized libraries for CRISPR‐Cas9 genetic screens with multiple modalities. Nat. Commun. 9: 5416.
67 Sanson, K.R., Deweirdt, P.C., Sangree, A.K. et al. (2020). Optimization of AsCas12a for combinatorial genetic screens in human cells. bioRxiv https://www.biorxiv.org/content/10.1101/747170v1.
68 Seki, A. and Rutz, S. (2018). Optimized RNP transfection for highly efficient CRISPR/Cas9‐mediated gene knockout in primary T cells. J. Exp. Med. 215: 985–997.
69 Sharpe, J.J. and Cooper, T.A. (2017). Unexpected consequences: exon skipping caused by CRISPR‐generated mutations. Genome Biol. 18: 109.
70 Shifrut, E., Carnevale, J., Tobin, V. et al. (2018). Genome‐wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175: 1958–1971. e15.
71 Slaymaker, I.M., Gao, L., Zetsche, B. et al. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84–88.
72 Smits, A.H., Ziebell, F., Joberty, G. et al. (2019). Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16: 1087–1093.
73 Song, C.Q., Li, Y., Mou, H. et al. (2017). Genome‐wide CRISPR screen identifies regulators of mitogen‐activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 152: 1161–1173. e1.
74 Strezoska, Z., Perkett, M.R., Chou, E.T. et al. (2017). High‐content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries. J. Biotechnol. 251: 189–200.
75 Tak, Y.E., Kleinstiver, B.P., Nunez, J.K. et al. (2017). Inducible and multiplex gene regulation using CRISPR‐Cpf1‐based transcription factors. Nat. Methods 14: 1163–1166.
76 Takeda, H., Kataoka, S., Nakayama, M. et al. (2019). CRISPR‐Cas9‐mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci. U. S. A. 116: 15635–15644.
77 Thomas, J.D., Polaski, J.T., Feng, Q. et al. (2020). RNA isoform screens uncover the essentiality and tumor‐suppressor activity of ultraconserved poison exons. Nat. Genet. 52: 84–94.
78 Tuladhar, R., Yeu, Y., Tyler Piazza, J. et al. (2019). CRISPR‐Cas9‐based mutagenesis frequently provokes on‐target mRNA misregulation. Nat. Commun. 10: 4056.
79 Tzelepis, K., Koike‐Yusa, H., De Braekeleer, E. et al. (2016). A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in Acute Myeloid Leukemia. Cell Rep. 17: 1193–1205.
80 Vakulskas, C.A., Dever, D.P., Rettig, G.R. et al. (2018). A high‐fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24: 1216–1224.
81 Van Der Meer, D., Barthorpe, S., Yang, W. et al. (2019). Cell Model Passports‐a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 47: D923–D929.
82 Wang, T., Birsoy, K., Hughes, N.W. et al. (2015). Identification and characterization of essential genes in the human genome. Science 350: 1096–1101.
83 Wei, J., Long, L., Zheng, W. et al. (2019). Targeting REGNASE‐1 programs long‐lived effector T cells for cancer therapy. Nature 576: 471–476.
84 Wienert, B., Wyman, S.K., Richardson, C.D. et al. (2019). Unbiased detection of CRISPR off‐targets in vivo using DISCOVER‐Seq. Science 364: 286–289.
85 Wiszniewska, J., Bi, W., Shaw, C. et al. (2014). Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur. J. Hum. Genet. 22: 79–87.
86 Wu, J. and Yin, H. (2019). Engineering guide RNA to reduce the off‐target effects of CRISPR. J. Genet. Genomics 46: 523–529.
87 Yau, E.H., Kummetha, I.R., Lichinchi, G. et al. (2017). Genome‐wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 77: 6330–6339.
88 Ye, L., Park, J.J., Dong, M.B. et al. (2019). in vivo CRISPR screening in CD8 T cells with AAV‐sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37: 1302–1313.
89 Yeung, A.T.Y., Choi, Y.H., Lee, A.H.Y. et al. (2019). A genome‐wide knockout screen in human macrophages identified host factors modulating salmonella infection. MBio 10.
90 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.
91 Zhang, F. (2019). Development of CRISPR‐Cas systems for genome editing and beyond. Q. Rev. Biophys. 52: 1–31.
92 Zhao, Y., Tyrishkin, K., Sjaarda, C. et al. (2019). A one‐step tRNA‐CRISPR system for genome‐wide genetic interaction mapping in mammalian cells. Sci. Rep. 9: 14499.
93 Zischewski, J., Fischer, R., and Bortesi, L. (2017). Detection of on‐target and off‐target mutations generated by CRISPR/Cas9 and other sequence‐specific nucleases. Biotechnol. Adv. 35: 95–104.