Читать книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов - Страница 24

References

Оглавление

1 1. Munier, N. (2005). Introduction to Sustainability: Road to a Better Future. Dordrecht: Springer.

2 2. Blewitt, J. (2008). Understanding Sustainable Development. Padstow: Earthscan.

3 3. United Nations World Commission on Environment and Development (1987). Our Common Futute (Brundtland Report). Oxford: Oxford University Press.

4 4. The United Nations (1993). Report of the United Nations Conference on Environment and Development. New York: United Nations.

5 5. Schummer, J., Bensaude‐Vincent, B., and Van Tiggelen, B. (2007). The Public Image of Chemistry. Singapore: World Scientific Publishing.

6 6. Anastas, P.T. and Warner, J.C. (1998). Green Chemistry: Theory and Practice. New York: Oxford University Press.

7 7. Curran, M.A. (2010). Biobased materials. In: Kirk‐Othmer Encyclopedia of Chemical Technology (ed. C. Ley), 1–19. Hoboken, NJ: Wiley.

8 8. Taherzadeh, M., Bolton, K., Wong, J., and Pandey, A. (2019). Sustainable Resource Recovery and Zero Waste Approaches. Elsevier.

9 9. Babu, R.P., O'connor, K., and Seeram, R. (2013). Current progress on bio‐based polymers and their future trends. Progress in Biomaterials 2 (1): 1–16.

10 10. Smith, E.L., Abbott, A.P., and Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews 114 (21): 11060–11082.

11 11. Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J.T.N. et al. (2019). Lignin materials for adsorption: current trend, perspectives and opportunities. Bioresource Technology 272: 570–581.

12 12. Ragauskas, A.J., Williams, C.K., Davison, B.H. et al. (2006). The path forward for biofuels and biomaterials. Science 311 (5760): 484–489.

13 13. Hamad, K., Kaseem, M., Ayyoob, M. et al. (2018). Polylactic acid blends: the future of green, light and tough. Progress in Polymer Science 85: 83–127.

14 14. González‐García, P. (2018). Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews 82: 1393–1414.

15 15. Sim, D.H.H., Tan, I.A.W., Lim, L.L.P., and Hameed, B.H. (2021). Encapsulated biochar‐based sustained release fertilizer for precision agriculture: a review. Journal of Cleaner Production 303, 127018.

16 16. Xiong, X., Yu, I.K.M., Cao, L. et al. (2017). A review of biochar‐based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology 246: 254–270.

17 17. Thommes, M., Kaneko, K., Neimark, A.V. et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10): 1051–1069.

18 18. Stein, A., Wang, Z., and Fierke, M.A. (2009). Functionalization of porous carbon materials with designed pore architecture. Advanced Materials 21 (3): 265–293.

19 19. Zhu, J., Yan, C., Zhang, X. et al. (2020). A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science 76: 100788.

20 20. Vassilev, S.V., Baxter, D., Andersen, L.K., and Vassileva, C.G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase‐mineral and chemical composition and classification. Fuel 105: 40–76.

21 21. Zając, G., Szyszlak‐Bargłowicz, J., Gołębiowski, W., and Szczepanik, M. (2018). Chemical characteristics of biomass ashes. Energies 11 (11): 2885.

22 22. Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53: 1468–1485.

23 23. Goutam, S., Omar, N., Van Den Bossche, P., and Van Mierlo, J. (2017). Review of nanotechnology for anode materials in batteries. In: Emerging Nanotechnologies in Rechargeable Energy Storage Systems (ed. L.M. Rodriguez‐Martinez and N. Omar), 45–82. Elsevier.

24 24. Thomas, B.S., Yang, J., Mo, K.H. et al. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: a comprehensive review. Journal of Building Engineering 40: 1–12.

High-Performance Materials from Bio-based Feedstocks

Подняться наверх