Читать книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов - Страница 49

References

Оглавление

1 1. Grand View Research, US (2020). Catalyst Market Size & Share Analysis Report, 2019–2025.

2 2. Idrees, M., Batool, S., Kalsoom, T. et al. (2018). Animal manure‐derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. Journal of Environmental Management 213: 109–118. https://doi.org/10.1016/j.jenvman.2018.02.003.

3 3. Osman, N.B., Shamsuddin, N., and Uemura, Y. (2016). Activated carbon of oil palm empty fruit bunch (EFB); core and shaggy. Procedia Engineering 148: 758–764. https://doi.org/10.1016/j.proeng.2016.06.610.

4 4. Buentello‐Montoya, D., Zhang, X., Li, J. et al. (2020). Performance of biochar as a catalyst for tar steam reforming: effect of the porous structure. Applied Energy 259: 114176. https://doi.org/10.1016/j.apenergy.2019.114176.

5 5. Chen, R.X. and Wang, W.C. (2019). The production of renewable aviation fuel from waste cooking oil. Part I: Bio‐alkane conversion through hydro‐processing of oil. Renewable Energy 135: 819–835. https://doi.org/10.1016/j.renene.2018.12.048.

6 6. Dehkhoda, A.M., West, A.H., and Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General 382 (2): 197–204. https://doi.org/10.1016/j.apcata.2010.04.051.

7 7. Lee, H.W., Lee, H., Kim, Y.M. et al. (2019). Recent application of biochar on the catalytic biorefinery and environmental processes. Chinese Chemical Letters 30 (12): 2147–2150. https://doi.org/10.1016/j.cclet.2019.05.002.

8 8. Li, C., Zhang, C., Gholizadeh, M. et al. (2020). Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst. Journal of Hazardous Materials 399: 123075. https://doi.org/10.1016/j.jhazmat.2020.123075.

9 9. Nejati, B., Adami, P., Bozorg, A. et al. (2020). Catalytic pyrolysis and bio‐products upgrading derived from Chlorella vulgaris over its biochar and activated biochar‐supported Fe catalysts. Journal of Analytical and Applied Pyrolysis 152: 104799. https://doi.org/10.1016/j.jaap.2020.104799.

10 10. Kan, T., Strezov, V., and Evans, T.J. (2016). Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews 57: 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185.

11 11. Byrne, C.E. and Nagle, D.C. (1997). Carbonization of wood for advanced materials applications. Carbon 35 (2): 259–266. https://doi.org/10.1016/S0008‐6223(96)00136‐4.

12 12. Volpe, M., Messineo, A., Mäkelä, M. et al. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology 206: 106456. https://doi.org/10.1016/j.fuproc.2020.106456.

13 13. Demirbas, A. (2005). Pyrolysis of ground beech wood in irregular heating rate conditions. Journal of Analytical and Applied Pyrolysis 73 (1): 39–43. https://doi.org/10.1016/j.jaap.2004.04.002.

14 14. Elyounssi, K., Collard, F.X., Mateke, J.N. et al. (2012). Improvement of charcoal yield by two‐step pyrolysis on eucalyptus wood: a thermogravimetric study. Fuel 96: 161–167. https://doi.org/10.1016/j.fuel.2012.01.030.

15 15. Erçin, D. and Yürüm, Y. (2003). Carbonisation of Fir (Abies bornmulleriana) wood in an open pyrolysis system at 50–300°C. Journal of Analytical and Applied Pyrolysis 67 (1): 11–22. https://doi.org/10.1016/S0165‐2370(02)00011‐6.

16 16. Kato, Y., Enomoto, R., Akazawa, M. et al. (2016). Characterization of Japanese cedar bio‐oil produced using a bench‐scale auger pyrolyzer. SpringerPlus 5 (1): 177. https://doi.org/10.1186/s40064‐016‐1848‐7.

17 17. Nanda, S., Mohanty, P., Pant, K.K. et al. (2013). Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Research 6 (2): 663–677. https://doi.org/10.1007/s12155‐012‐9281‐4.

18 18. Pedersen, T.H., Grigoras, I.F., Hoffmann, J. et al. (2016). Continuous hydrothermal co‐liquefaction of aspen wood and glycerol with water phase recirculation. Applied Energy 162: 1034–1041. https://doi.org/10.1016/j.apenergy.2015.10.165.

19 19. Grima‐Olmedo, C., Ramírez‐Gómez, Á., Gómez‐Limón, D. et al. (2016). Activated carbon from flash pyrolysis of eucalyptus residue. Heliyon 2 (9): E00155. http://dx.doi.org/10.1016/j.heliyon.2016.e00155.

20 20. Ekhlasi, L., Younesi, H., Rashidi, A. et al. (2018). Populus wood biomass‐derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Process Safety and Environmental Protection 113: 97–108. https://doi.org/10.1016/j.psep.2017.09.017.

21 21. Ilnicka, A., Kamedulski, P., Aly, H.M. et al. (2020). Manufacture of activated carbons using Egyptian wood resources and its application in oligothiophene dye adsorption. Arabian Journal of Chemistry 13 (5): 5284–5291. https://doi.org/10.1016/j.arabjc.2020.03.007.

22 22. Wang, X., Liu, Y., Zhu, L. et al. (2019). Biomass derived N‐doped biochar as efficient catalyst supports for CO2 methanation. Journal of CO2 Utilization 34: 733–741. https://doi.org/10.1016/j.jcou.2019.09.003.

23 23. Chen, W., Fang, Y., Li, K. et al. (2020). Bamboo wastes catalytic pyrolysis with N‐doped biochar catalyst for phenols products. Applied Energy 260: 114242. https://doi.org/10.1016/j.apenergy.2019.114242.

24 24. Qian, K., Kumar, A., Bellmer, D. et al. (2015). Physical properties and reactivity of char obtained from downdraft gasification of sorghum and eastern red cedar. Fuel 143: 383–389. https://doi.org/10.1016/j.fuel.2014.11.054.

25 25. Wang, S., Dai, G., Yang, H. et al. (2017). Lignocellulosic biomass pyrolysis mechanism: a state‐of‐the‐art review. Progress in Energy and Combustion Science 62: 33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

26 26. Shen, Y. (2018). Rice husk‐derived activated carbons for adsorption of phenolic compounds in water. Global Challenges 2 (12): 1800043. https://doi.org/10.1002/gch2.201800043.

27 27. Steurer, E. and Ardissone, G. (2015). Hydrothermal carbonization and gasification technology for electricity production using biomass. Energy Procedia 79: 47–54. https://doi.org/10.1016/j.egypro.2015.11.473.

28 28. Rashidi, N.A., Yusup, S., Ahmad, M.M. et al. (2012). Activated carbon from the renewable agricultural residues using single step physical activation: a preliminary analysis. APCBEE Procedia 3: 84–92. https://doi.org/10.1016/j.apcbee.2012.06.051.

29 29. Biswas, B., Pandey, N., Bisht, Y. et al. (2017). Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology 237: 57–63. https://doi.org/10.1016/j.biortech.2017.02.046.

30 30. Huff, M.D., Kumar, S., and Lee, J.W. (2014). Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management 146: 303–308. https://doi.org/10.1016/j.jenvman.2014.07.016.

31 31. Rahman, M.M., Awang, M., Mohosina, B.S. et al. (2012). Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration. APCBEE Procedia 1: 293–298. https://doi.org/10.1016/j.apcbee.2012.03.048.

32 32. Bader, N. and Ouederni, A. (2016). Optimization of biomass‐based carbon materials for hydrogen storage. Journal of Energy Storage 5: 77–84. https://doi.org/10.1016/j.est.2015.12.009.

33 33. Apaydın‐Varol, E. and Pütün, A.E. (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis 98: 29–36. https://doi.org/10.1016/j.jaap.2012.07.001.

34 34. Lee, Y., Park, J., Ryu, C. et al. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology 148: 196–201. https://doi.org/10.1016/j.biortech.2013.08.135.

35 35. González, J.F., Román, S., Encinar, J.M. et al. (2009). Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis 85 (1): 134–141. https://doi.org/10.1016/j.jaap.2008.11.035.

36 36. Rezma, S., Birot, M., Hafiane, A. et al. (2017). Physically activated microporous carbon from a new biomass source: date palm petioles. Comptes Rendus Chimie 20 (9): 881–887. https://doi.org/10.1016/j.crci.2017.05.003.

37 37. Al‐Wabel, M.I., Rafique, M.I., Ahmad, M. et al. (2019). Pyrolytic and hydrothermal carbonization of date palm leaflets: characteristics and ecotoxicological effects on seed germination of lettuce. Saudi Journal of Biological Sciences 26 (4): 665–672. https://doi.org/10.1016/j.sjbs.2018.05.017.

38 38. Cai, J., Li, B., Chen, C. et al. (2016). Hydrothermal carbonization of tobacco stalk for fuel application. Bioresource Technology 220: 305–311. https://doi.org/10.1016/j.biortech.2016.08.098.

39 39. Tobi, A.R., Dennis, J.O., Zaid, H.M. et al. (2019). Comparative analysis of physiochemical properties of physically activated carbon from palm bio‐waste. Journal of Materials Research and Technology 8 (5): 3688–3695. https://doi.org/10.1016/j.jmrt.2019.06.015.

40 40. Chaiya, C. and Reubroycharoen, P. (2013). Production of bio oil from para rubber seed using pyrolysis process. Energy Procedia 34: 905–911. https://doi.org/10.1016/j.egypro.2013.06.828.

41 41. Fu, P., Hu, S., Xiang, J. et al. (2012). Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. Journal of Analytical and Applied Pyrolysis 98: 177–183. https://doi.org/10.1016/j.jaap.2012.08.005.

42 42. Xu, Q., Tang, S., Wang, J. et al. (2018). Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Safety and Environmental Protection 115: 49–56. https://doi.org/10.1016/j.psep.2017.10.014.

43 43. Zhang, J., Gao, J., Chen, Y. et al. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in Physics 7: 1628–1633. https://doi.org/10.1016/j.rinp.2017.04.028.

44 44. David, E. and Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. Journal of Analytical and Applied Pyrolysis 110: 322–332. https://doi.org/10.1016/j.jaap.2014.09.021.

45 45. Kumar, A. and Jena, H.M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics 6: 651–658. https://doi.org/10.1016/j.rinp.2016.09.012.

46 46. Mistar, E.M., Alfatah, T., and Supardan, M.D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two‐step KOH activation. Journal of Materials Research and Technology 9 (3): 6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041.

47 47. Liu, Z., Zhu, Z., Dai, J. et al. (2018). Waste biomass based‐activated carbons derived from soybean pods as electrode materials for high‐performance supercapacitors. ChemistrySelect 3 (21): 5726–5732. https://doi.org/10.1002/slct.201800609.

48 48. Kılıç, M., Apaydın‐Varol, E., and Pütün, A.E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science 261: 247–254. https://doi.org/10.1016/j.apsusc.2012.07.155.

49 49. Ncibi, M.C., Ranguin, R., Pintor, M.J. et al. (2014). Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. Journal of Analytical and Applied Pyrolysis 109: 205–214. https://doi.org/10.1016/j.jaap.2014.06.010.

50 50. Ponomarev, N. and Sillanpää, M. (2019). Combined chemical‐templated activation of hydrolytic lignin for producing porous carbon. Industrial Crops and Products 135: 30–38. https://doi.org/10.1016/j.indcrop.2019.03.050.

51 51. Hayashi, J., Kazehaya, A., Muroyama, K. et al. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38 (13): 1873–1878. https://doi.org/10.1016/S0008‐6223(00)00027‐0.

52 52. Lillo‐Ródenas, M.A., Cazorla‐Amorós, D., and Linares‐Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41 (2): 267–275. https://doi.org/10.1016/S0008‐6223(02)00279‐8.

53 53. Foo, K.Y. and Hameed, B.H. (2012). Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal 187: 53–62. https://doi.org/10.1016/j.cej.2012.01.079.

54 54. Pütün, A.E., Gerçel, H.F., Koçkar, Ö.M. et al. (1996). Oil production from an arid‐land plant: fixed‐bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75 (11): 1307–1312. https://doi.org/10.1016/0016‐2361(96)00098‐1.

55 55. Mazlan, M.A.F., Uemura, Y., Yusup, S. et al. (2016). Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Engineering 148: 530–537. https://doi.org/10.1016/j.proeng.2016.06.549.

56 56. Rajgopal, S., Karthikeyan, T., Prakash Kumar, B.G. et al. (2006). Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green. Chemical Engineering Journal 116 (3): 211–217. https://doi.org/10.1016/j.cej.2005.09.026.

57 57. Prakash Kumar, B.G., Shivakamy, K., Miranda, L.R. et al. (2006). Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. Journal of Hazardous Materials 136 (3): 922–929. https://doi.org/10.1016/j.jhazmat.2006.01.037.

58 58. Im, U.S., Kim, J., Lee, S.H. et al. (2019). Preparation of activated carbon from needle coke via two‐stage steam activation process. Materials Letters 237: 22–25. https://doi.org/10.1016/j.matlet.2018.09.171.

59 59. Funke, A. and Ziegler, F. (2010). Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4 (2): 160–177. https://doi.org/10.1002/bbb.198.

60 60. Demirbas, A. (2004). Effects of temperature and particle size on bio‐char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2): 243–248. https://doi.org/10.1016/j.jaap.2004.07.003.

61 61. Titirici, M., Antonietti, M., and Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly‐ to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204–1212. https://doi.org/10.1039/B807009A.

62 62. Rodríguez Correa, C., Stollovsky, M., Hehr, T. et al. (2017). Influence of the carbonization process on activated carbon properties from lignin and lignin‐rich biomasses. ACS Sustainable Chemistry & Engineering 5 (9): 8222–8233. https://doi.org/10.1021/acssuschemeng.7b01895.

63 63. Bhat, V.V., Contescu, C.I., and Gallego, N.C. (2009). The role of destabilization of palladium hydride in the hydrogen uptake of Pd‐containing activated carbons. Nanotechnology 20 (20): 204011. https://doi.org/10.1088/0957‐4484/20/20/204011.

64 64. Fuertes, A.B., Arbestain, M.C., Sevilla, M. et al. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal of Soil Research 48 (7): 618–626. https://doi.org/10.1071/SR10010.

65 65. Dai, L., Chang, D.W., Baek, J.‐B. et al. (2012). Carbon nanomaterials for advanced energy conversion and storage. Micro and Nano: No Small Matter 8 (8): 1130–1166. https://doi.org/10.1002/smll.201101594.

66 66. Dreyer, D.R., Ruoff, R.S., and Bielawski, C.W. (2010). From conception to realization: an historial account of graphene and some perspectives for its future. Angewandte Chemie International Edition 49 (49): 9336–9344. https://doi.org/10.1002/anie.201003024.

67 67. Georgakilas, V., Otyepka, M., Bourlinos, A.B. et al. (2012). Functionalization of graphene: covalent and non‐covalent approaches, derivatives and applications. Chemical Reviews. American Chemical Society 112 (11): 6156–6214. https://doi.org/10.1021/cr3000412.

68 68. Lee, H.C., Liu, W.W., Chai, S.P. et al. (2017). Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances 7 (26): 15644–15693. https://doi.org/10.1039/C7RA00392G.

69 69. Zhao, G., Wen, T., Chen, C. et al. (2012). Synthesis of graphene‐based nanomaterials and their application in energy‐related and environmental‐related areas. RSC Advances 2 (25): 9286–9303. https://doi.org/10.1039/C2RA20990J.

70 70. Gao, M., Pan, Y., Huang, L. et al. (2011). Epitaxial growth and structural property of graphene on Pt(111). Applied Physics Letters 98 (3): 33101. https://doi.org/10.1063/1.3543624.

71 71. Hernandez, Y., Nicolosi, V., Lotya, M. et al. (2008). High‐yield production of graphene by liquid‐phase exfoliation of graphite. Nature Nanotechnology 3 (9): 563–568. https://doi.org/10.1038/nnano.2008.215.

72 72. Moon, I.K., Lee, J., Ruoff, R.S., and Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications 1 (1): 73. https://doi.org/10.1038/ncomms1067.

73 73. Wang, H., Li, Z., and Mitlin, D. (2014). Tailoring biomass‐derived carbon nanoarchitectures for high‐performance supercapacitors. ChemElectroChem 1 (2): 332–337. https://doi.org/10.1002/celc.201300127.

74 74. Wang, Y., Zheng, Y., Xu, X. et al. (2011). Electrochemical delamination of CVD‐grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5 (12): 9927–9933. https://doi.org/10.1021/nn203700w.

75 75. Shams, S.S., Zhang, L.S., Hu, R. et al. (2015). Synthesis of graphene from biomass: a green chemistry approach. Materials Letters 161: 476–479. https://doi.org/10.1016/j.matlet.2015.09.022.

76 76. Du, Q.S., Li, D.P., Long, S.Y. et al. (2018). Graphene like porous carbon with wood‐ear architecture prepared from specially pretreated lignin precursor. Diamond and Related Materials 90: 109–115. https://doi.org/10.1016/j.diamond.2018.10.011.

77 77. Shi, J., Wang, Y., Du, W. et al. (2016). Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon 99: 330–337. https://doi.org/10.1016/j.carbon.2015.12.049.

78 78. Dumesic, J.A., Huber, G.W., and Boudart, M. (2008). Principles of heterogeneous catalysis. In: Handbook of Heterogeneous Catalysis (ed. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp). Online. Wiley https://doi.org/10.1002/9783527610044.hetcat0001.

79 79. Chen, J., Wang, M., Wang, S. et al. (2018). Hydrogen production via steam reforming of acetic acid over biochar‐supported nickel catalysts. International Journal of Hydrogen Energy 43 (39): 18160–18168. https://doi.org/10.1016/j.ijhydene.2018.08.048.

80 80. Liu, W.J., Jiang, H., and Yu, H.Q. (2015). Development of biochar‐based functional materials: toward a sustainable platform carbon material. Chemical Reviews 115 (22): 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195.

81 81. Chellappan, S., Nair, V., Sajith, V. et al. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chinese Journal of Chemical Engineering 26 (12): 2654–2663. https://doi.org/10.1016/j.cjche.2018.02.034.

82 82. Weber, K. and Quicker, P. (2018). Properties of biochar. Fuel 217: 240–261. https://doi.org/10.1016/j.fuel.2017.12.054.

83 83. Zhao, S.X., Ta, N., and Wang, X.D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10 (9): https://doi.org/10.3390/en10091293.

84 84. Vidal, J.L., Andrea, V.P., MacQuarrie, S.L., and Kerton, F.M. (2019). Oxidized biochar as a simple renewable catalyst for the production of cyclic carbonates from carbon dioxide and epoxides. ChemCatChem 11 (16): 4089–4095. https://doi.org/10.1002/cctc.201900290.

85 85. Cao, X., Sun, S., and Sun, R. (2017). Application of biochar‐based catalysts in biomass upgrading: a review. RSC Advances 7 (77): 48793–48805. https://doi.org/10.1039/c7ra09307a.

86 86. Chia, C.H., Gong, B., Joseph, S.D. et al. (2012). Imaging of mineral‐enriched biochar by FTIR, Raman and SEM‐EDX. Vibrational Spectroscopy 62: 248–257. https://doi.org/10.1016/j.vibspec.2012.06.006.

87 87. Lin, Y., Munroe, P., Joseph, S. et al. (2012). Nanoscale organo‐mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant and Soil 357 (1–2): 369–380. https://doi.org/10.1007/s11104‐012‐1169‐8.

88 88. Tasim, B., Masood, T., Shah, Z.A. et al. (2019). Quality evaluation of biochar prepared from different agricultural residues. Sarhad Journal of Agriculture 35 (1): 134–143. https://doi.org/10.17582/journal.sja/2019/35.1.134.143.

89 89. Feng, D., Zhao, Y., Zhang, Y. et al. (2016). Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2. Chemical Engineering Journal 306: 422–432. https://doi.org/10.1016/j.cej.2016.07.065.

90 90. Lee, J., Kim, K.H., and Kwon, E.E. (2017). Biochar as a catalyst. Renewable and Sustainable Energy Reviews 77: 70–79. https://doi.org/10.1016/j.rser.2017.04.002.

91 91. Feng, D., Zhang, Y., Zhao, Y. et al. (2018). Improvement and maintenance of biochar catalytic activity for in‐situ biomass tar reforming during pyrolysis and H2O/CO2 gasification. Fuel Processing Technology 172: 106–114. https://doi.org/10.1016/j.fuproc.2017.12.011.

92 92. Liu, Y., Paskevicius, M., Wang, H. et al. (2020). Difference in tar reforming activities between biochar catalysts activated in H2O and CO2. Fuel 271: 117636. https://doi.org/10.1016/j.fuel.2020.117636.

93 93. Sun, H., Feng, D., Zhao, Y. et al. (2020). Mechanism of catalytic tar reforming over biochar: description of volatile‐H2O‐char interaction. Fuel 275: 117954. https://doi.org/10.1016/j.fuel.2020.117954.

94 94. Liu, Y., Paskevicius, M., Wang, H. et al. (2019). Role of O‐containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst. Fuel 253: 441–448. https://doi.org/10.1016/j.fuel.2019.05.037.

95 95. Feng, D., Zhao, Y., Zhang, Y. et al. (2017). Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar. International Journal of Hydrogen Energy 42 (18): 13070–13084. https://doi.org/10.1016/j.ijhydene.2017.04.018.

96 96. Ashok, J., Dewangan, N., Das, S. et al. (2020). Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology 199: 106252. https://doi.org/10.1016/j.fuproc.2019.106252.

97 97. Kastner, J.R., Mani, S., and Juneja, A. (2015). Catalytic decomposition of tar using iron supported biochar. Fuel Processing Technology 130: 31–37. https://doi.org/10.1016/j.fuproc.2014.09.038.

98 98. Guo, F., Liang, S., Jia, X. et al. (2020). One‐step synthesis of biochar‐supported potassium‐iron catalyst for catalytic cracking of biomass pyrolysis tar. International Journal of Hydrogen Energy 45 (33): 16398–16408. https://doi.org/10.1016/j.ijhydene.2020.04.084.

99 99. Saka, S. and Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80 (2): 225–231. https://doi.org/10.1016/S0016‐2361(00)00083‐1.

100 100. Hsu, A.F., Jones, K.C., Foglia, T.A. et al. (2004). Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists’ Society 81 (8): 749–752. https://doi.org/10.1007/s11746‐004‐0973‐9.

101 101. Xiao, M., Mathew, S., and Obbard, J.P. (2009). Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 1 (2): 115–125. https://doi.org/10.1111/j.1757‐1707.2009.01009.x.

102 102. Tang, Z.E., Lim, S., Pang, Y.L. et al. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renewable and Sustainable Energy Reviews 92: 235–253. https://doi.org/10.1016/j.rser.2018.04.056.

103 103. Chang, B., Fu, J., Tian, Y. et al. (2012). Mesoporous solid acid catalysts of sulfated zirconia/SBA‐15 derived from a vapor‐induced hydrolysis route. Applied Catalysis A: General 437–438: 149–154. https://doi.org/10.1016/j.apcata.2012.06.031.

104 104. Kim, M., DiMaggio, C., Salley, S.O. et al. (2012). A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology 118: 37–42. https://doi.org/10.1016/j.biortech.2012.04.035.

105 105. Lam, M.K., Lee, K.T., and Mohamed, A.R. (2009). Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Applied Catalysis B: Environmental 93 (1–2): 134–139. https://doi.org/10.1016/j.apcatb.2009.09.022.

106 106. Li, Y., Zhang, X.D., Sun, L. et al. (2010). Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO42−/ZrO2‐TiO2/La3+. Applied Energy 87 (1): 156–159. https://doi.org/10.1016/j.apenergy.2009.06.030.

107 107. Mardhiah, H.H., Ong, H.C., Masjuki, H.H. et al. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non‐edible oils. Renewable and Sustainable Energy Reviews 67: 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036.

108 108. Mardhiah, H.H., Ong, H.C., Masjuki, H.H. et al. (2017). Investigation of carbon‐based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management 144: 10–17. https://doi.org/10.1016/j.enconman.2017.04.038.

109 109. Hara, M. (2010). Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Topics in Catalysis 53 (11–12): 805–810. https://doi.org/10.1007/s11244‐010‐9458‐z.

110 110. Dawodu, F.A., Ayodele, O.O., Xin, J. et al. (2014). Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. Journal of Chemical Technology and Biotechnology 89 (12): 1898–1909. https://doi.org/10.1002/jctb.4274.

111 111. Zhou, Y., Niu, S., and Li, J. (2016). Activity of the carbon‐based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management 114: 188–196. https://doi.org/10.1016/j.enconman.2016.02.027.

112 112. Lee, H.V., Juan, J.C., and Taufiq‐Yap, Y.H. (2015). Preparation and application of binary acid‐base CaO‐La2O3 catalyst for biodiesel production. Renewable Energy 74: 124–132. https://doi.org/10.1016/j.renene.2014.07.017.

113 113. Kaur, M. and Ali, A. (2011). Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renewable Energy 36 (11): 2866–2871. https://doi.org/10.1016/j.renene.2011.04.014.

114 114. Zhang, F., Wu, X.H., Yao, M. et al. (2016). Production of biodiesel and hydrogen from plant oil catalyzed by magnetic carbon‐supported nickel and sodium silicate. Green Chemistry 18 (11): 3302–3314. https://doi.org/10.1039/c5gc02680f.

115 115. Thushari, I. and Babel, S. (2018). Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology 248: 199–203. https://doi.org/10.1016/j.biortech.2017.06.106.

116 116. Endut, A., Abdullah, S.H.Y.S., Hanapi, N.H.M. et al. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration and Biodegradation 124: 250–257. https://doi.org/10.1016/j.ibiod.2017.06.008.

117 117. Dehkhoda, A.M. and Ellis, N. (2013). Biochar‐based catalyst for simultaneous reactions of esterification and transesterification. Catalysis Today 207: 86–92. https://doi.org/10.1016/j.cattod.2012.05.034.

118 118. Piker, A., Tabah, B., Perkas, N. et al. (2016). A green and low‐cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 182: 34–41. https://doi.org/10.1016/j.fuel.2016.05.078.

119 119. Shu, Y., Zhang, F., Wang, F. et al. (2018). Catalytic reduction of NOx by biomass‐derived activated carbon supported metals. Chinese Journal of Chemical Engineering 26 (10): 2077–2083. https://doi.org/10.1016/j.cjche.2018.04.019.

120 120. Tang, Z.E., Lim, S., Pang, Y.L. et al. (2020). Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renewable Energy 158: 91–102. https://doi.org/10.1016/j.renene.2020.05.119.

121 121. Zhang, Y., Lei, H., Yang, Z. et al. (2018). Renewable high‐purity mono‐phenol production from catalytic microwave‐induced pyrolysis of cellulose over biomass‐derived activated carbon catalyst. ACS Sustainable Chemistry and Engineering 6 (4): 5349–5357. https://doi.org/10.1021/acssuschemeng.8b00129.

122 122. Konwar, L.J., Das, R., Thakur, A.J. et al. (2014). Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil‐cake waste. Journal of Molecular Catalysis A: Chemical 388–389: 167–176. https://doi.org/10.1016/j.molcata.2013.09.031.

123 123. Wang, C., Hu, Y., Chen, Q. et al. (2013). Bio‐oil upgrading by reactive distillation using p‐toluene sulfonic acid catalyst loaded on biomass activated carbon. Biomass and Bioenergy 56: 405–411. https://doi.org/10.1016/j.biombioe.2013.04.026.

124 124. Mateo, W., Lei, H., Villota, E. et al. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio‐jet fuel production from biomass and waste plastics. Bioresource Technology 297: 122411. https://doi.org/10.1016/j.biortech.2019.122411.

125 125. Ahmad Farid, M.A., Hassan, M.A., Taufiq‐Yap, Y.H. et al. (2017). Production of methyl esters from waste cooking oil using a heterogeneous biomass‐based catalyst. Renewable Energy 114: 638–643. https://doi.org/10.1016/j.renene.2017.07.064.

126 126. Veerakumar, P., Panneer Muthuselvam, I., Hung, C. et al. (2016). Biomass‐derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes. ACS Sustainable Chemistry and Engineering 4 (12): 6772–6782. https://doi.org/10.1021/acssuschemeng.6b01727.

127 127. Rusanen, A., Lahti, R., Lappalainen, K. et al. (2019). Catalytic conversion of glucose to 5‐hydroxymethylfurfural over biomass‐based activated carbon catalyst. Catalysis Today 357: 94–101. https://doi.org/10.1016/j.cattod.2019.02.040.

128 128. Patel, A.R., Asatkar, A., Patel, G. et al. (2019). Synthesis of rice husk derived activated mesoporous carbon immobilized palladium hybrid nano‐catalyst for ligand‐free Mizoroki‐Heck/Suzuki/Sonogashira cross‐coupling reactions. ChemistrySelect 4 (19): 5577–5584. https://doi.org/10.1002/slct.201900384.

129 129. Quan, C., Wang, H., and Gao, N. (2020). Development of activated biochar supported Ni catalyst for enhancing toluene steam reforming. International Journal of Energy Research 44 (7): 5749–5764. https://doi.org/10.1002/er.5335.

130 130. Zhu, L., Yin, S., Yin, Q. et al. (2015). Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science and Engineering 3 (2): 126–134. https://doi.org/10.1002/ese3.58.

131 131. Tabak, A., Sevimli, K., Kaya, M. et al. (2019). Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry 138 (6): 3885–3895. https://doi.org/10.1007/s10973‐019‐08387‐2.

132 132. Palomo, J., Rodríguez‐Cano, M.A., Rodríguez‐Mirasol, J. et al. (2019). On the kinetics of methanol dehydration to dimethyl ether on Zr‐loaded P‐containing mesoporous activated carbon catalyst. Chemical Engineering Journal 378: 122198. https://doi.org/10.1016/j.cej.2019.122198.

133 133. Akbayrak, S., Özçifçi, Z., and Tabak, A. (2020). Activated carbon derived from tea waste: a promising supporting material for metal nanoparticles used as catalysts in hydrolysis of ammonia borane. Biomass and Bioenergy 138: 105589. https://doi.org/10.1016/j.biombioe.2020.105589.

134 134. Cordero‐Lanzac, T., Palos, R., Arandes, J.M. et al. (2017). Stability of an acid activated carbon based bifunctional catalyst for the raw bio‐oil hydrodeoxygenation. Applied Catalysis B: Environmental 203: 389–399. https://doi.org/10.1016/j.apcatb.2016.10.018.

135 135. Meryemoglu, B., Irmak, S., and Hasanoglu, A. (2016). Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous‐phase reforming process. Fuel Processing Technology 151: 59–63. https://doi.org/10.1016/j.fuproc.2016.05.040.

136 136. Titirici, M.M., Thomas, A., Yu, S.H. et al. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials 19 (17): 4205–4212. https://doi.org/10.1021/cm0707408.

137 137. Titirici, M.M., Thomas, A., and Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 31 (6): 787–789. https://doi.org/10.1039/b616045j.

138 138. Joo, J.B., Kim, Y.J., Kim, W. et al. (2008). Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro‐oxidation. Catalysis Communications 10 (3): 267–271. https://doi.org/10.1016/j.catcom.2008.08.031.

139 139. Morais, R.G., Rey‐Raap, N., Figueiredo, J.L. et al. (2020). Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. Journal of Energy Chemistry 50: 260–270. https://doi.org/10.1016/j.jechem.2020.03.039.

140 140. Wen, Z., Ma, Z., Mai, F. et al. (2019). Catalytic ethanolysis of microcrystalline cellulose over a sulfonated hydrothermal carbon catalyst. Catalysis Today 355: 272–279. https://doi.org/10.1016/j.cattod.2019.05.070.

141 141. Wu, Q., Zhang, G., Gao, M. et al. (2019). Clean production of 5‐hydroxymethylfurfural from cellulose using a hydrothermal/biomass‐based carbon catalyst. Journal of Cleaner Production 213: 1096–1102. https://doi.org/10.1016/j.jclepro.2018.12.276.

142 142. Wataniyakul, P., Boonnoun, P., Quitain, A.T. et al. (2018). Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5‐hydroxymethylfurfural. Catalysis Communications 104: 41–47. https://doi.org/10.1016/j.catcom.2017.10.014.

143 143. Hu, W., Tong, W., Li, Y. et al. (2020). Hydrothermal route‐enabled synthesis of sludge‐derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate. Journal of Hazardous Materials 388: 121801. https://doi.org/10.1016/j.jhazmat.2019.121801.

144 144. Wataniyakul, P., Boonnoun, P., Quitain, A.T. et al. (2018). Preparation of hydrothermal carbon acid catalyst from defatted rice bran. Industrial Crops and Products 117: 286–294. https://doi.org/10.1016/j.indcrop.2018.03.002.

145 145. Ibrahim, S.F., Asikin‐Mijan, N., Ibrahim, M.L. et al. (2020). Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Conversion and Management 210: 112698. https://doi.org/10.1016/j.enconman.2020.112698.

146 146. Yamaguchi, D., Kitano, M., Suganuma, S. et al. (2009). Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. Journal of Physical Chemistry C 113 (8): 3181–3188. https://doi.org/10.1021/jp808676d.

147 147. Zong, M.H., Duan, Z.Q., Lou, W.Y. et al. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry 9 (5): 434–437. https://doi.org/10.1039/b615447f.

148 148. Yao, Y., Lian, C., Wu, G. et al. (2017). Synthesis of “sea urchin”‐like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants. Applied Catalysis B: Environmental 219: 563–571. https://doi.org/10.1016/j.apcatb.2017.07.064.

149 149. Ming, J., Liu, R., Liang, G. et al. (2011). Knitting an oxygenated network‐coat on carbon nanotubes from biomass and their applications in catalysis. Journal of Materials Chemistry 21 (29): 10929–10934. https://doi.org/10.1039/c1jm10989h.

150 150. Das, V.K., Shifrina, Z.B., and Bronstein, L.M. (2017). Graphene and graphene‐like materials in biomass conversion: paving the way to the future. Journal of Materials Chemistry A 5 (48): 25131–25143. https://doi.org/10.1039/c7ta09418c.

151 151. Jurca, B., Bucur, C., Primo, A. et al. (2019). N‐Doped defective graphene from biomass as catalyst for CO2 hydrogenation to methane. ChemCatChem 11 (3): 985–990. https://doi.org/10.1002/cctc.201801984.

152 152. Huang, B., Xia, M., Qiu, J. et al. (2019). Biomass derived graphene‐like carbons for electrocatalytic oxygen reduction reaction. ChemNanoMat 5 (5): 682–689. https://doi.org/10.1002/cnma.201900009.

153 153. Wu, L., Song, J., Zhou, B. et al. (2016). Preparation of Ru/graphene using glucose as carbon source and hydrogenation of levulinic acid to γ‐valerolactone. Chemistry – An Asian Journal 11 (19): 2792–2796. https://doi.org/10.1002/asia.201600453.

High-Performance Materials from Bio-based Feedstocks

Подняться наверх