Читать книгу Urban Ecology and Global Climate Change - Группа авторов - Страница 38

References

Оглавление

1 Aarssen, L.W. (1998). Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing. Oikos 98: 606–612.

2 Akbari, H. and Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings 133: 834–842.

3 Alberti, M. (2008). Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems. New York: Springer‐Verlag.

4 Andersson, E., Barthel, S., Borgström, S. et al. (2014). Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services. Ambio 43 (4): 445–453. https://doi.org/10.1007/s13280‐014‐0506‐y.

5 Armson, D., Stringer, P., and Ennos, A. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening 11: 245–255.

6 Aronson, M.F.J., Lepczyk, C.A., Evans, K.L. et al. (2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment 15: 189–196. https://doi.org/10.1002/fee.1480.

7 Asgarian, A., Amiri, B.J., and Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystem 18: 209–222.

8 Bao, T., Li, X., Zhang, J. et al. (2016). Assessing the distribution of urban green spaces and its anisotropic cooling distance on urban heat island pattern in Baotou, China. ISPRS International Journal of Geo‐Information 5: 12.

9 Battles, A.C. and Kolbe, J.J. (2019). Miami heat: urban heat islands influence the thermal suitability of habitats for ectotherms. Global Change Biology 25: 562–576.

10 Carpenter, S.R. and Folke, C. (2006). Ecology for transformation. Trends in Ecology and Evolution 21: 309–315.

11 Čeplová, N., Kalusová, V., and Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning 159: 15–22.

12 Chang, C., Lee, X., Liu, S. et al. (2016). Urban heat islands in China enhanced by haze pollution. Nature Communications 7: 12509.

13 Chapin, F.S. III, Power, M.E., Pickett, S.T.A. et al. (2011). Earth stewardship: science for action to sustain the human–earthsystem. Ecosphere 2 (8): 1–20.

14 Chapman, S., Watson, J.E.M., Salazar, A. et al. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology 32: 1921–1935.

15 Childers, D.L., Pickett, S.T., Grove, J.M. et al. (2014). Advancing urban sustainability theory and action: challenges and opportunities. Landscape and Urban Planning 125: 320–328.

16 Childers, D.L., Cadenasso, M.L., Grove, J.M. et al. (2015). An ecology for cities: a transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 7 (4): 3774–3791.

17 Colding, J. and Barthel, S. (2017). An urban ecology critique on the “smart city” model. Journal of Cleaner Production 164: 95–101. https://doi.org/10.1016/j.jclepro.2017.06.191.

18 Cong, N., Wang, T., Nan, H. et al. (2013). Changes in satellite‐derived spring vegetation green‐up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology 19: 881–891.

19 Cook‐Patton, S.C. and Agrawal, A.A. (2014). Exotic plants contribute positively to biodiversity functions but reduce native seed production and arthropod richness. Ecology 95: 1642–1650.

20 Costanza, R. (1992). Toward an operational definition of ecosystem Health. In: Ecosystem Health: New Goals for Environmental Management (eds. R. Constanza, B.G. Norton and B.D. Haskell), 239–256. Washington, DC: Island Press.

21 Cubino, J.P., Borowy, D., Knapp, S. et al. (2021). Contrasting impacts of cultivated exotics on the functional diversity of domestic gardens in three regions with different aridity. Ecosystems 24: 1–16.

22 Dallimer, M., Tang, Z., Gaston, K.J., and Davies, Z.G. (2016). The extent of shifts in vegetation phenology between rural and urban areas within a human‐dominated region. Ecology and Evolution 6 (7): 1942–1953.

23 Davies, Z.G., Edmondson, J., Heinemeyer, A. et al. (2011). Mapping an urban ecosystem service: quantifying above‐ground carbon storage at a city‐wide scale. Journal of Applied Ecology 48 (5): 1125–1134.

24 de Graaf, I.E., Gleeson, T., van Beek, L.R. et al. (2019). Environmental flow limits to global groundwater pumping. Nature 574 (7776): 90–94.

25 Du, H., Song, X., Jiang, H. et al. (2016). Research on the cooling island effects of water body: a case study of Shanghai, China. Ecological Indicators 67: 31–38.

26 Duffy, G.A. and Chown, S.L. (2016). Urban warming favours C4 plants in temperate European cities. Journal of Ecology 104 (6): 1618–1626.

27 Elmqvist, T., Fragkias, M., Goodness, J. et al. (eds.) (2013). Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Dordrecht: Springer.

28 European Commission (2013). Green Infrastructure (GI): Enhancing Europe’s Natural Capital. Brussels: European Commission.

29 Ferrer, A.L.C., Thomé, A.M.T., and Scavarda, A.J. (2018). Sustainable urban infrastructure: a review. Resources, Conservation and Recycling 128: 360–372. https://doi.org/10.1016/j.resconrec.2016.07.017.

30 Forman, R.T. (2014). Urban Ecology: Science of Cities. Cambridge University Press.

31 Gaston, K.J., Davies, Z.G., and Edmondson, J.L. (2010). Urban environments and ecosystem functions. In: Urban Ecology (ed. K.J. Gaston), 35–52. Cambridge: Cambridge University Press.

32 Gaston, K.J., Ávila‐Jiménez, M.L., and Edmondson, J. (2013). Managing urban ecosystems for goods and services. Journal of Applied Ecology 50 (4): 830–840.

33 Green, T.L., Kronenberg, J., Andersson, E. et al. (2016). Insurance value of green infrastructure in and around cities. Ecosystems 19 (6): 1051–1063.

34 Grime, J.P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. Chichester, UK: Wiley.

35 Grimm, N.B., Grove, J.M., Pickett, S.T.A., and Redman, C.L. (2000). Integrated approaches to long‐term studies of urban ecological systems. Bioscience 50: 571–584.

36 Grimm, N., Faeth, S., Golubiewski, N. et al. (2008). Global change and the ecology of cities. Science 319: 756–760.

37 Halpern, B.S., Walbridge, S., Selkoe, K.A. et al. (2008). A global map of human impact on marine ecosystems. Science 319: 948–952.

38 Hofmann, M., Westermann, J.R., Kowarik, I., and van der Meer, E. (2012). Perceptions of parks and urban derelict land by landscape planners and residents. Urban Forestry & Urban Greening 11: 303–312.

39 Hu, Y., Hou, M., Jia, G. et al. (2019). Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS Journal of Photogrammetry and Remote Sensing 156: 160–168.

40 Hutyra, L.R., Yoon, B., and Alberti, M. (2011). Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Global Change Biology 17 (2): 783–797.

41 Jaganmohan, M., Knapp, S., Buchmann, C.M., and Schwarz, N. (2016). The bigger, the better? The influence of urban green space design on cooling effects for residential areas. Journal of Environmental Quality 45: 134–145.

42 Jeong, S.‐J., Ho, C.‐H., Gim, H.‐J., and Brown, M.E. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology 17: 2385–2399.

43 Jiao, M., Zhou, W., Zheng, Z. et al. (2017). Patch size of trees affects its cooling effectiveness: a perspective from shading and transpiration processes. Agricultural and Forest Meteorology 247: 293–299.

44 Jim, C.Y. (2011). Holistic research agenda for sustainable management and conservation of urban woodlands. Landscape and Urban Planning 100: 375–379.

45 Jungels, J., Rakow, D.A., Allred, S.B., and Skelly, S.M. (2013). Attitudes and aesthetic reactions toward green roofs in the Northeastern United States. Landscape and Urban Planning 117: 13–21.

46 Kattel, G.R., Elkadi, H., and Meikle, H. (2013). Developing a complementary framework for urban ecology. Urban Forestry & Urban Greening 12 (4): 498–508.

47 Keniger, L.E., Gaston, K.J., Irvine, K.N., and Fuller, R.A. (2013). What are the benefits of interacting with nature? International Journal of Environmental Research and Public Health 10: 913–935.

48 Knapp, S., Winter, M., and Klotz, S. (2017). Increasing species richness but decreasing phylogenetic richness and divergence over a 320‐year period of urbanization. Journal of Applied Ecology 54: 1152–1160. https://doi.org/10.1111/1365‐2664.12826.

49 Kong, F., Yin, H., James, P. et al. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning 128: 35–47.

50 Kuang, W., Liu, Y., Dou, Y. et al. (2015). What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape Ecology 30: 357–373.

51 Lee, R. (2011). The outlook for population growth. Science 333: 569–573.

52 Liu, C. and Li, X. (2012). Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry & Urban Greening 11: 121–128.

53 Liu, J., Hull, V., Batistella, M. et al. (2013). Framing sustainability in a telecoupled world. Ecology and Society 18 (2): 26. https://doi.org/10.5751/ES‐05873‐180226.

54 Livesley, S.J., Escobedo, F.J., and Morgenroth, J. (2016). The biodiversity of urban and peri‐urban forests and the diverse ecosystem services they provide as socio‐ecological systems. Forests 7 (12): 291. https://doi.org/10.3390/f7120291.

55 Lorenz, K. and Lal, R. (2009). Biogeochemical C and N cycles in urban soils. Environment International 35: 1–8.

56 Lososová, Z., Tichý, L., Divíšek, J. et al. (2018). Projecting potential future shifts in species composition of European urban plant communities. Diversity and Distributions 24 (6): 765–775.

57 Ma, Y., Wright, J., Gopal, S., and Phillips, N. (2020). Seeing the invisible: from imagined to virtual urban landscapes. Cities 98: 102559.

58 McDonald, R. and Marcotullio, P. (2011). Global effects of urbanization on ecosystemservices. In: Urban Ecology – Patterns, Processes, and Applications (eds. J. Niemelä, J. Breuste, T. Elmqvist, et al.), 193–205. Oxford: Oxford University Press.

59 McDonnell, M., Breuste, J., and Hahs, A. (eds.) (2009). Ecology of Cities and Towns: A Comparative Approach. Cambridge: Cambridge University Press.

60 Menzel, A. and Fabian, P. (1999). Growing season extended in Europe. Nature 397: 659.

61 Milton, S.J., Wilson, J.R.U., Richardson, D.M. et al. (2007). Invasive alien plants infiltrate birdmediated shrub nucleation processes in arid savanna. Journal of Ecology 95: 648–661.

62 Mitchell, M.G., Johansen, K., Maron, M. et al. (2018). Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high‐resolution modeling and mapping. Science of the Total Environment 622: 57–70.

63 Møller, L.A., Skou, A.M.T., and Kollmann, J. (2012). Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats? Urban Forestry & Urban Greening 11 (1): 59–64.

64 Monteiro, M.V., Doick, K.J., Handley, P., and Peace, A. (2016). The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening 16: 160–169.

65 Mullaney, J., Lucke, T., and Trueman, S.J. (2015). A review of benefits and challenges in growing street trees in paved urban environments. Landscape and Urban Planning 134: 157–166. https://doi.org/10.1016/j.landurbplan.2014.10.013.

66 Myint, S.W., Zheng, B.J., Talen, E. et al. (2015). Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosystem Health and Sustainability 1: 1–15.

67 Neil, K., Landrum, L., and Wu, J. (2010). Effects of urbanization on flowering phenology in the metropolitan Phoenix region of USA: findings from herbarium records. Journal of Arid Environments 74: 440–444.

68 Neil, K., Wu, J., Bang, C., and Faeth, S. (2014). Urbanization affects plant flowering phenology and pollinator community: effects of water availability and land cover. Ecological Processes 3 (1): 1–12.

69 Niemelä, J., Saarela, S.‐R., Söderman, T. et al. (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodiversity and Conservation 19: 3225–3243.

70 Niemelä, J., Breuste, J., Elmqvist, T. et al. (eds.) (2011). Urban Ecology – Patterns, Processes, and Applications. Oxford: Oxford University Press.

71 Niemelä, J. (2014). Ecology of urban green spaces: the way forward in answering major research questions. Landscape and Urban Planning 125: 298–303.

72 Norton, B.A., Coutts, A.M., Livesley, S.J. et al. (2015). Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134: 127–138.

73 Nowak, D.J., Greenfield, E.J., Hoehn, R.E., and Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution 178: 229–236.

74 Oke, T.R. (2002). Boundary Layer Climates. London and New York: Routledge.

75 Pandit, A., Lu, Z., and Crittenden, J.C. (2015). Managing the complexity of urban systems. Journal of Industrial Ecology 19 (2): 201–204. https://doi.org/10.1111/jiec.12263.

76 Pauleit, S., Liu, L., Ahern, J., and Kazmierczak, A. (2011). Multifunctional green infra‐structure planning to promote ecological services in the city. In: Urbanecology – Patterns, Processes, and Applications (eds. J. Niemelä, J. Breuste, T. Elmqvist, et al.), 272–285. Oxford: Oxford University Press.

77 Pearse, W.D., Cavender‐Bares, J., Hobbie, S.E. et al. (2018). Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9: e02105.

78 Pedersen Zari, M. (2019). Devising urban biodiversity habitat provision goals: ecosystem services analysis. Forests 10 (5): 391.

79 Phelan, P.E., Kaloush, K., Miner, M. et al. (2015). Urban heat island: mechanisms, implications, and possible remedies. Annual Review of Environment and Resources 40: 285–307.

80 Pickett, S.T.A., Cadenaso, M.L., Grove, J.M. et al. (2001). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics 32: 127–157.

81 Pickett, S.T.A., Cadenasso, M.L., Grove, J.M. et al. (2011). Urban ecological systems: scientific foundations and a decade of progress. Journal of Environmental Management 92: 331–362.

82 Pickett, S.T., Cadenasso, M.L., Childers, D.L. et al. (2016). Evolution and future of urban ecological science: ecology in, of, and for the city. Ecosystem Health and Sustainability 2 (7): e01229.

83 Raciti, S.M., Hutyra, L.R., Rao, P., and Finzi, A.C. (2012). Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks. Ecological Applications 22: 1–58.

84 Rai, P.K. and Kim, K.H. (2019). Invasive alien plants and environmental remediation: a new paradigm for sustainable restoration ecology. Restoration Ecology 28 (1): 3–7.

85 Ramyar, R. and Zarghami, E. (2017). Green infrastructure contribution for climate change adaptation in urban landscape context. Applied Ecology and Environmental Research 15 (3): 1193–1209.

86 Reich, P.B., Luo, Y., Bradford, J.B. et al. (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America 111: 13721–13726.

87 Ren, N., Wang, Q., Wang, Q. et al. (2017). Upgrading to urban water system 3.0 through sponge city construction. Frontiers of Environmental Science and Engineering 11 (4): 9.

88 Restrepo, J.D.C. and Morales‐Pinzon, T. (2018). Urban metabolism and sustainability: precedents, genesis and research perspectives. Resources, Conservation and Recycling 131: 216–224.

89 Richards, D., Masoudi, M., Oh, R.R. et al. (2019). Global variation in climate, human development, and population density has implications for urban ecosystem services. Sustainability 11 (22): 6200.

90 Richardson, D.M., Pyšek, P., Rejmánek, M. et al. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93–107. https://doi.org/10.1046/j.1472‐4642.2000.00083.x.

91 Rosenzweig, C., Solecki, W., Hammerm, S.A., and Mehrotra, S. (2010). Cities lead the way in climate‐change action. Nature 467: 909–911.

92 Savard, J.P.L., Clergeau, P., and Mennechez, G. (2000). Biodiversity concepts and urban ecosystems. Landscape and Urban Planning 4: 131–142. https://doi.org/10.1016/S0169‐2046(00)00037‐2.

93 Schadler, E. and Danks, C. (2011). Carbon Offsetting through Urban Tree Planting. Burlington, VT: University of Vermont.

94 Seto, K.C. and Shepherd, J.M. (2009). Global urban land‐usetrends and climate impacts. Current Opinion in Environment Sustainability 1: 89–95.

95 Seto, K.C., Güneralp, B., and Hutyra, L.R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America 109 (40): 16083–16088.

96 Singh, R.P. and Raghubanshi, A.S. (2020). ‘Green building’ movement in India: study on institutional support and regulatory support. In: Urban Ecology, 435–455. Elsevier.

97 Singh, P., Borthakur, A., Singh, R. et al. (2021). A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundwater for Sustainable Development 14: 100607.

98 Steiner, F. (2014). Frontiers in urban ecological design and planning research. Landscape and Urban Planning 125: 304–311.

99 Sun, Y. and Cui, Y. (2018). Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: case study of four Chinese autonomous municipalities. Transport Policy 66: 116–126. https://doi.org/10.1016/j.tranpol.2018.02.006.

100 Tigges, J., Lakes, T., and Hostert, P. (2013). Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sensing of Environment 136: 66–75.

101 Tzoulas, K. and Greening, K. (2011). Urban ecology and human health. In: Urban Ecology – Patterns, Processes, and Applications (eds. J. Niemelä, J. Breuste, T. Elmqvist, et al.), 263–271. Oxford: Oxford University Press.

102 UN (2011). Department of Economic and Social Affairs; World Population Ageing 2009. Population and Development Review 37: 403.

103 Upadhyay, S., Singh, R., Verma, P., and Raghubanshi, A.S. (2021). Spatio‐temporal variability in soil CO2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes. Journal of Environmental Management 295: 113141.

104 Vasenev, V. and Kuzyakov, Y. (2018). Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving factors. Land Degradation & Development 29 (6): 1607–1622.

105 Vasishth, A. (2015). Ecologizing our cities: a particular, process‐function view of southern California, from within complexity. Sustainability 7 (9): 11756–11776.

106 Velasco, E. and Roth, M. (2010). Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by Eddy covariance technique. Geography Compass 4: 1238–1259.

107 Velasco, E., Roth, M., Norford, L., and Molina, L.T. (2016). Does urban vegetation enhance carbon sequestration? Landscape and Urban Planning 148: 99–107.

108 Verma, P., Singh, R., Bryant, C., and Raghubanshi, A.S. (2020c). Green space indicators in a social‐ecological system: a case study of Varanasi, India. Sustainable Cities and Society 60: 102261.

109 Verma, P., Singh, R., Singh, P., and Raghubanshi, A.S. (2020a). Urban ecology–current state of research and concepts. In: Urban Ecology (eds. P. Verma, P. Singh, R. Singh and A.S. Raghubanshi), 3–16. Elsevier.

110 Verma, P., Singh, R., Singh, P., and Raghubanshi, A.S. (2020b). Critical assessment and future dimensions for the urban ecological systems. In: Urban Ecology (eds. P. Verma, P. Singh, R. Singh and A.S. Raghubanshi), 479–497. Elsevier.

111 Vesala, T., Järvi, L., Launiainen, S. et al. (2008). Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60: 188–199.

112 Vitousek, P.M. (1994). Beyond global warming: ecology and global change–Macarthur award lecture. Ecology 75: 1861–1876.

113 Walther, G.R., Roques, A., Hulme, P.E. et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution 24: 686–693. https://doi.org/10.1016/j.tree.2009.06.008.

114 Wamsler, C., Brink, E., and Rivera, C. (2013). Planning for climate change in urban areas: from theory to practice. Journal of Cleaner Production 50: 68–81.

115 Wang, C., Wang, Z.‐H., Wang, C., and Myint, S.W. (2019). Environmental cooling provided by urban trees under extreme heat and cold waves in U.S. cities. Remote Sensing of Environment 227: 28–43.

116 Wang, J., Zhou, W., Jiao, M. et al. (2020). Significant effects of ecological context on urban trees’ cooling efficiency. ISPRS Journal of Photogrammetry and Remote Sensing 159: 78–89.

117 Wang, X., Zhang, Y., Zhang, J. et al. (2021). Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis. Journal of Cleaner Production 281: 125224.

118 Weissert, L.F., Salmond, J.A., and Schwendenmann, L. (2014). A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Climate 8: 100–125.

119 Wolman, A. (1965). The metabolism of cities. Scientific American 213 (3): 179–190.

120 Wong, P.P.‐Y., Lai, P.‐C., Low, C.‐T. et al. (2016). The impact of environmental and human factors on urban heat and microclimate variability. Building and Environment 95: 199–208.

121 Wu, J.G. (2013). The state‐of‐the‐science in urban ecology and sustainability: a landscape perspective. Landscape and Urban Planning 125 (6): 298–303.

122 Yang, G., Yu, Z., Jørgensen, G., and Vejre, H. (2020). How can urban blue‐green space be planned for climate adaption in high‐latitude cities? A seasonal perspective. Sustainable Cities and Society 53: 101932.

123 Yu, Z., Guo, X., Jørgensen, G., and Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators 82: 152–162.

124 Zhao, L., Lee, X., Smith, R.B., and Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature 511: 216–219.

125 Zhao, S., Tang, Y., and Chen, A. (2016). Carbon storage and sequestration of urban street trees in Beijing, China. Frontiers in Ecology and Evolution 4: 1–8.

126 Zhou, W., Wang, J., and Cadenasso, M.L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sensing of Environment 195: 1–12.

127 Zipperer, W.C., Morse, W.C., and Gaither, J.G. (2011). Linking social and ecological systems. In: Urban Ecology: Patterns, Processes, and Applications (eds. J. Niemelä, J.H. Breuste, T. Elmqvist, et al.). New York: Oxford University Press.

Urban Ecology and Global Climate Change

Подняться наверх