Читать книгу Handbook of Aggregation-Induced Emission, Volume 2 - Группа авторов - Страница 23

References

Оглавление

1 1 Zhao, Z., Chen, S., Chan, C. Y. K. et al. (2012) A facile and versatile approach to efficient luminescent materials for applications in organic light‐emitting diodes. Chemistry—An Asian Journal 7 (3): 484–488.

2 2 Zhou, J., Liu, Q., Feng, W. et al. (2015) Upconversion luminescent materials: advances and applications. Chemical Reviews 115 (1): 395–465.

3 3 Zhu, X., Su, Q., Feng, W. et al. (2017) Anti‐Stokes shift luminescent materials for bio‐applications. Chemical Society Reviews 46 (4): 1025–1039.

4 4 Grimsdale, A. C., Chan, K. L., Martin, R. E. et al. (2009) Synthesis of light‐emitting conjugated polymers for applications in electroluminescent devices. Chemical Reviews 109 (3): 897–1091.

5 5 Ding, D., Li, K., Liu, B. et al. (2013) Bioprobes based on AIE fluorogens. Accounts of Chemical Research 46 (11): 2441–2453.

6 6 Chen, C., Ou, H., Liu, R. et al. (2020) Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Advanced Materials 32 (3): 1806331.

7 7 Yang, Z., Mao, Z., Xie, Z. et al. (2017) Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews 46 (3): 915–1016.

8 8 Lee, J. H., Chen, C. H., Lee, P. H. et al. (2019) Blue organic light‐emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C 7 (20), 5874–5888.

9 9 Luo, J., Xie, Z., Lam, J. W. Y. et al. (2001) Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chemical Communications 381 (18): 1740–1741.

10 10 Wang, J., Gu, X., Zhang, P. et al. (2017) Ionization and anion−π+ interaction: a new strategy for structural design of aggregation‐induced emission luminogens. Journal of the American Chemistry Society 139 (46): 16974–16979.

11 11 Wang, Y., Chen, M., Alifu, N. et al. (2017) Aggregation‐induced emission luminogen with deep‐red emission for through‐skull three‐photon fluorescence imaging of mouse. ACS Nano 11 (10): 10452–10461.

12 12 Niu, G., Zheng, X., Zhao, Z. et al. (2019) Functionalized acrylonitriles with aggregation‐induced emission: structure tuning by simple reaction–condition variation, efficient red emission, and two‐photon bioimaging. Journal of the American Chemistry Society 141 (38): 15111–15120.

13 13 Mei, J., Leung, N. L. C., Kwok, R. T. K. et al. (2015) Aggregation‐induced emission: together we shine, united we soar! Chemical Reviews 115 (21): 11718–11940.

14 14 Chen, M., Xie, W., Li, D. et al. (2018) Utilizing a pyrazine‐containing aggregation‐induced emission luminogen as an efficient photosensitizer for imaging‐guided two‐photon photodynamic therapy. Chemistry‐A European Journal 24 (62): 16603–16608.

15 15 Chen, Y., Zhang, W., Zhao, Z. et al. (2018) An easily accessible ionic aggregation‐induced emission luminogen with hydrogen‐bonding‐switchable emission and wash‐free imaging ability. Angewandte Chemie International Edition 57 (18): 5011–5015.

16 16 Wang, D., Su, H., Kwok, R. T. K. et al. (2017) Facile synthesis of red/NIR AIE luminogens with simple structures, bright emissions, and high photostabilities, and their applications for specific imaging of lipid droplets and image‐guided photodynamic therapy. Advanced Functional Materials 27 (46): 1704039.

17 17 Huang, J., Yang, X., Li, X. et al. (2012) Bipolar AIE‐active luminogens comprised of an oxadiazole core and terminal TPE moieties as a new type of host for doped electroluminescence. Chemical Communications 48 (77): 9586–9588.

18 18 Shi, H., Xin, D., Gu, X. et al. (2016) The synthesis of novel AIE emitters with the triphenylethene‐carbazole skeleton and para‐/meta‐substituted arylboron groups and their application in efficient non‐doped OLEDs. Journal of Materials Chemistry C 4 (6), 1228–1237.

19 19 Xu, B., Chi, Z., Li, H. et al. (2011) Synthesis and properties of aggregation‐induced emission compounds containing triphenylethene and tetraphenylethene moieties. The Journal of Physical Chemistry C 115 (35): 17574–17581.

20 20 Han, T., Zhang, Y. J., Feng, X. et al. (2013) Reversible and hydrogen bonding‐assisted piezochromic luminescence for solid‐state tetraaryl‐buta‐1,3‐diene. Chemical Communications 49 (63): 7049–7051.

21 21 Yang, Z., Qin, W., Leung, N. L. C. et al. (2016) A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C 2016, 4 (1): 99–107.

22 22 Xiong, J. B., Yuan, Y. X., Wang, L. et al. (2018) Evidence for aggregation‐induced emission from free rotation restriction of double bond at excited state. Organic Letters 20 (2): 373–376.

23 23 Qu, D., Yu, T., Yang, Z. et al. Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro‐substituted triphenylethylene derivatives. Chemical Science 7 (8): 5302–5306.

24 24 Li, Z., Dong, Y. Q., Lam, J. W. Y. et al. (2009) Functionalized siloles: versatile synthesis, aggregation‐induced emission, and sensory and device applications. Advanced Functional Materials 19 (6): 905–917.

25 25 Nie, H., Chen, B., Zeng, J. et al. (2018) Excellent n‐type light emitters based on AIE‐active silole derivatives for efficient simplified organic light‐emitting diodes. Journal of Materials Chemistry C 6 (14): 3690–3698.

26 26 Liu, G., Chen, D., Kong, L. et al. (2015) Red fluorescent luminogen from pyrrole derivatives with aggregation‐enhanced emission for cell membrane imaging. Chemical Communications 51 (40): 8555–8558.

27 27 Li, K., Liu, Y., Li, Y. et al. (2017) 2,5‐bis(4‐alkoxycarbonylphenyl)‐1,4‐diaryl‐1,4‐dihydropyrrolo[3,2‐b]pyrrole (AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chemical Science 8 (10): 7528–7267.

28 28 Nie, H., Hu, K., Cai, Y. et al. (2017) Tetraphenylfuran: aggregation‐induced emission or aggregation‐caused quenching? Materials Chemistry Frontiers 1 (6): 1125–1129.

29 29 Guo, J., Hu, S., Luo, W. et al. (2017) A novel aggregation‐induced emission platform from 2,3‐diphenylbenzo[b]thiophene S,S‐dioxide. Chemical Communications 53 (9): 1463–1466.

30 30 Gao, Y., Feng. G., Jiang, T. et al. (2015) Biocompatible nanoparticles based on diketo‐pyrrolo‐pyrrole (DPP) with aggregation‐induced red/NIR emission for in vivo two‐photon fluorescence imaging Advanced Functional Materials 25 (19): 2857–2866.

31 31 Zhao, Z., He, B. and Tang, B. Z. (2015) Aggregation‐induced emission of siloles. Chemical Science 6 (10): 5347–5365.

32 32 Feng, X., Tong, B., Shen, J. et al. (2010) Aggregation‐induced emission enhancement of aryl‐substituted pyrrole derivatives. The Journal of Physical Chemistry B 114 (50): 16731–16736.

33 33 Chen, M., Li, L., Nie, H. et al. (2015) Tetraphenylpyrazine‐based AIEgens: facile preparation and tunable light emission. Chemical Science 6 (3): 1932–1937.

34 34 Chen, M., Li, L., Wu, H. et al. (2018) Unveiling the different emission behavior of polytriazoles constructed from pyrazine‐based AIE monomers by click polymerization. ACS Applied Materials & Interfaces 10 (15): 12181–12188.

35 35 Zhang, J., Liu, Q., Wu, W. et al. (2019) Real‐time monitoring of hierarchical self‐assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 13 (3): 3618–3628.

36 36 Pan, L., Luo, W., Chen, M. et al. (2016) Tetraphenylpyrazine‐based luminogens with aggregation‐enhanced emission characteristics: preparation and property. Chinese Journal of Organic Chemistry 36 (6): 1316–1324.

37 37 Han, M., Chen, M., Ebendorff‐Heidepriem, H. et al. (2016) An optical fibre sensor for remotely detecting water traces in organic solvents. RSC Advances 6 (85): 82186–82190.

38 38 Chen, M., Hu, X., Liu, J. et al. (2018) Rational design of red AIEgens with a new core structure from non‐emissive heteroaromatics. Chemical Science 9 (40): 7829–7834.

39 39 Chen, M., Li, L., Nie, H. et al. (2015) N‐type pyrazine and triazole‐based luminogens with aggregation‐enhanced emission characteristics. Chemical Communications 51 (53): 10710–10713.

40 40 Laurent, A. (1845) Ueber die Einwirkung von Jod auf xanthogensaures Kali. Journal für praktische Chemie 36 (1): 352–362.

41 41 Erdmann, J. (1865) Ann. 135: 181.

42 42 Japp, F. R. and Wilson, W. H. (1886) On ammonia‐derivatives of benzoin. Journal of the Chemical Society 49: 825–831.

43 43 Davidson, D., Weiss, M. and Jelling, M. (1937) The action of ammonia on benzoin. The Journal of Organic Chemistry 2 (4): 328–334.

44 44 Dong, Y., Lam, J. W. Y., Qin, A. et al. (2007) Aggregation‐induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light‐emitting diodes. Applied Physical Letters 91 (1): 011111.

45 45 Tamaddon, F. and Tafti, D. A. (2016) SnCl2·H2O‐catalyzed solvent‐free synthesis of α‐amino ketones and tetrasubstituted pyrazines. Synlett 27 (15): 2217–2220.

46 46 Tamaddon, F., Tafti, D. A. and Pooramini, F. (2016) An improved synthesis of multi‐substituted pyrazines under calalyst‐ and solvent‐free conditions. Synthesis 48 (23): 4295–4299.

47 47 Khafizova, L. O., Shaibakova, M. G. and Dzhemilev, U. M. (2018) A new one‐pot synthesis of tetrasubstituted pyrazines by the Ti‐catalyzed reaction of aromatic and benzyl‐substituted nitriles with EtAlCl2. Chemistryselect 3 (41): 11451–11453.

48 48 Ganji, P. and Leeuwen, P. W. N. M. van (2017) Phosphine supported ruthenium nanoparticle catalyzed synthesis of substituted pyrazines and imidazoles from α‐diketones. The Journal of Organic Chemistry 82 (3): 1768–1774.

49 49 Petrosyan, A., Ehlers, P., Reimann, S. et al. (2015) Synthesis of tetraaryl‐ and tetraalkenylpyrazines by Suzuki–Miyaura reactions of tetrachloropyrazine. Tetrahedron 71 (38): 6803–6812.

50 50 Chen, M., Nie, H., Song, B. et al. (2016) Triphenylamine‐functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. Journal of Materials Chemistry C 4 (14): 2901–2908.

51 51 Wu, H., Luo, J., Xu, Z. et al. (2020) Uncommon intramolecular charge transfer effect and its potential application in OLED emitters. Chemical Research in Chinese Universities 36 (1): 61–67.

52 52 Wu, H., Pan, Y., Zeng, J. et al. (2019) Novel strategy for constructing high efficiency OLED emitters with excited state quinone‐conformation induced planarization process. Advanced Optical Materials 7 (18): 1900283.

53 53 Chen, Y., Zhu, C., Yang, Z. et al. (2013) A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angewandte Chemie International Edition 52 (6): 1688–1691.

54 54 Chen, M., Chen, R., Shi, Y. et al. (2018) Malonitrile‐functionalized tetraphenylpyrazine: aggregation‐induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism. Advanced Functional Materials 28 (6): 1704689.

55 55 Chen, M., Liu, J., Liu, F. et al. (2019) Tailoring the molecular properties with isomerism effect of AIEgens. Advanced Functional Materials 29 (37): 1903834.

56 56 Zhang, G. and Mastalerz, M. (2014) Organic cage compounds‐from shape‐persistency to function. Chemical Society Reviews 43 (6): 1934–1947.

57 57 Feng, H, Zheng, X. Gu, X. et al. (2018) White‐light emission of a binary light‐harvesting platform based on an amphiphilic organic cage. Chemistry of Materials 30 (4): 1285–1290.

58 58 Yaghi, O. M., Li, G. and Li, H. (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378: 703–706.

59 59 Li, Q., Ma, Z., Zhang, W. et al. (2016) AIE‐active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications 52 (75): 11284–11287.

60 60 Tao, C., Chen, B., Liu, X. et al. (2017) A highly luminescent entangled metal–organic framework based on pyridine‐substituted tetraphenylethene for efficient pesticide detection. Chemical Communications 53 (72): 9975–9978.

61 61 Yin, H., Wang, X. and Yin, X. (2019) Rotation restricted emission and antenna effect in single metal–organic frameworks. Journal of the American Chemistry Society 141 (38): 15166–15173.

Handbook of Aggregation-Induced Emission, Volume 2

Подняться наверх