Читать книгу Handbook of Aggregation-Induced Emission, Volume 2 - Группа авторов - Страница 39

References

Оглавление

1 1 Jenekhe, S.A. and Chen, X.L. (1999). Self‐assembly of ordered microporous materials from rod‐coil block copolymers. Science 283 (5400): 372–375.

2 2 Friend, R.H., Gymer, R.W., Holmes, A.B. et al. (1999). Electroluminescence in conjugated polymers. Nature 397 (6715): 121–128.

3 3 Birks, J.B. (1970). Photophysics of aromatic molecules. Wiley monographs in chemical physics. London, New York: Wiley‐Interscience. xiii, 704 p.

4 4 Ma, S.Q., Ma, L., Han, W.K., Jiang, S., Xu, B., Tian, W.J. (2018). Progress in 9,10‐distyrylanthracene derivatives with aggregation‐induced emission. Scientia Sinica Chimica 48: 683–697.

5 5 Uoyama, H., Goushi, K., Shizu, K. et al. (2012). Highly efficient organic light‐emitting diodes from delayed fluorescence. Nature 492 (7428): 234–238.

6 6 Yang Z.Y., Mao, Z., Xie, Z.L. et al. (2017). Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews 46 (3): 915–1016.

7 7 Sirringhaus, H. (2014). 25th anniversary article: Organic field‐effect transistors: The path beyond amorphous silicon. Advanced Materials 26 (9): 1319–1335.

8 8 Wang, C.L., Dong, H.L., Hu, W.P. et al. (2012). Semiconducting pi‐conjugated systems in field‐effect transistors: A material odyssey of organic electronics. Chemical Reviews 112 (4): 2208–2267.

9 9 Zhelev, Z., Ohba, H., and Bakalova, R. (2006). Single quantum dot‐micelles coated with silica shell as potentially non‐cytotoxic fluorescent cell tracers. Journal of the American Chemical Society 128 (19): 6324–6325.

10 10 Bakalova, R., Zhelev, Z., Aoki, I. et al. (2006). Silica‐shelled single quantum dot micelles as imaging probes with dual or multimodality. Analytical Chemistry 78 (16): 5925–5932.

11 11 Wang, M., Zhang, G.X., Zhang, D.Q. et al. (2010). Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation‐induced emission feature. Journal of Materials Chemistry 20 (10): 1858–1867.

12 12 Ding, D., Li, K., Liu, B. et al. (2013). Bioprobes based on AIE fluorogens. Accounts of Chemical Research 46 (11): 2441–2453.

13 13 Luo, J.D., Xie, Z.L., Lam, J.W.Y. et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chemical Communications ( 18): 1740–1741.

14 14 Hong, Y.N., Lam, J.W.Y., and Tang, B.Z. (2011). Aggregation‐induced emission. Chemical Society Reviews 40 (11): 5361–5388.

15 15 Yousefi, N., Sun, X.Y., Lin, X.Y. et al. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high‐performance electromagnetic interference shielding. Advanced Materials 26 (31): 5480–5487.

16 16 Mei, J., Leung, N.L.C., Kwok, R.T.K. et al. (2015). Aggregation‐induced emission: Together we shine, united we soar! Chemical Reviews 115 (21): 11718–11940.

17 17 He, J.T., Xu, B., Chen, F.P. et al. (2009). Aggregation‐induced emission in the crystals of 9,10‐distyrylanthracene derivatives: The essential role of restricted intramolecular torsion. Journal of Physical Chemistry C 113 (22): 9892–9899.

18 18 Xu, B., Fang, H.H., Dong, Y.J. et al. (2010). Solid state emission enhancement of 9,10‐distyrylanthracene derivatives and amplified spontaneous emission from a large single crystal. New Journal of Chemistry 34 (9): 1838–1842.

19 19 Xu, B., He, J.T., Dong, Y.J. et al. (2011). Aggregation emission properties and self‐assembly of conjugated oligocarbazoles. Chemical Communications 47 (23): 6602–6604.

20 20 Wang, Z.L., Xu, B., Zhang, L. et al. (2013). Folic acid‐functionalized mesoporous silica nanospheres hybridized with AIE luminogens for targeted cancer cell imaging. Nanoscale 5 (5): 2065–2072.

21 21 Li, X., Xu, B., Lu, H.G. et al. (2013). Label‐free fluorescence turn‐on detection of Pb2+ based on AIE‐active quaternary ammonium salt of 9,10‐distyrylanthracene. Analytical Methods 5 (2): 438–441.

22 22 Dong, Y.J., Xu, B., Zhang, J.B. et al. (2012). Piezochromic luminescence based on the molecular aggregation of 9,10‐bis((E)‐2‐(pyrid‐2‐yl)vinyl)anthracene. Angewandte Chemie‐International Edition 51 (43): 10782–10785.

23 23 Lu, H.G., Su, F.Y., Mei, Q. et al. (2012). A series of poly[N‐(2‐hydroxypropyl)methacrylamide] copolymers with anthracene‐derived fluorophores showing aggregation‐induced emission properties for bioimaging. Journal of Polymer Science Part A‐Polymer Chemistry 50 (5): 890–899.

24 24 Xu, B., Zhang, J.B., Ma, S.Q. et al. (2013). 9,10‐Distyrylanthracene derivatives: Aggregation induced emission, mechanism and their applications. Progress in Chemistry 25 (7): 1079–1089.

25 25 Zhao, J., Chi, Z.H., Yang, Z.Y. et al. (2018). Recent progress in the mechanofluorochromism of distyrylanthracene derivatives with aggregation‐induced emission. Materials Chemistry Frontiers 2 (9): 1595–1608.

26 26 Xue, S.F., Qiu, X., Sun, Q.K. et al. (2016). Alkyl length effects on solid‐state fluorescence and mechanochromic behavior of small organic luminophores. Journal of Materials Chemistry C 4 (8): 1568–1578.

27 27 Dong, Y.J., Zhang, J.B., Tan, X. et al. (2013). Multi‐stimuli responsive fluorescence switching: The reversible piezochromism and protonation effect of a divinylanthracene derivative. Journal of Materials Chemistry C 1 (45): 7554–7559.

28 28 Zhang, X.Q., Chi, Z.G., Xu, B.J. et al. (2012). End‐group effects of piezofluorochromic aggregation‐induced enhanced emission compounds containing distyrylanthracene. Journal of Materials Chemistry 22 (35): 18505–18513.

29 29 Zhang, X.Q., Chi, Z.G., Zhou, X. et al. (2012). Influence of carbazolyl groups on properties of piezofluorochromic aggregation‐enhanced emission compounds containing distyrylanthracene. Journal of Physical Chemistry C 116 (44): 23629–23638.

30 30 Li, H.Y., Zhang, X.Q., Chi, Z.G. et al. (2011). New thermally stable piezofluorochromic aggregation‐induced emission compounds. Organic Letters 13 (4): 556–559.

31 31 Zhang, X.Q., Chi, Z.G., Xu, B.J. et al. (2012). Multifunctional organic fluorescent materials derived from 9,10‐distyrylanthracene with alkoxyl endgroups of various lengths. Chemical Communications 48 (88): 10895–10897.

32 32 Liu, W., Wang, Y.L., Bu, L.Y. et al. (2013). Chain length‐dependent piezofluorochromic behavior of 9,10‐bis(p‐alkoxystyryl)anthracenes. Journal of Luminescence 143: 50–55.

33 33 Bu, L.Y., Sun, M.X., Zhang, D.T. et al. (2013). Solid‐state fluorescence properties and reversible piezochromic luminescence of aggregation‐induced emission‐active 9,10‐bis[(9,9‐dialkylfluorene‐2‐yl)vinyl]anthracenes. Journal of Materials Chemistry C 1 (10): 2028–2035.

34 34 Bu, L.Y., Li, Y.P., Wang, J.F. et al. (2013). Synthesis and piezochromic luminescence of aggregation‐enhanced emission 9,10‐bis(N‐alkylcarbazol‐2‐yl‐vinyl‐2)anthracenes. Dyes and Pigments 99 (3): 833–838.

35 35 Wang, Y.L., Liu, W., Bu, L.Y. et al. (2013). Reversible piezochromic luminescence of 9,10‐bis[(N‐alkylcarbazol‐3‐yl)vinyl]anthracenes and the dependence on N‐alkyl chain length. Journal of Materials Chemistry C 1 (4): 856–862.

36 36 Zheng, M., Sun, M.X., Li, Y.P. et al. (2014). Piezofluorochromic properties of AIE‐active 9,10‐bis(N‐alkylphenothiazin‐3‐yl‐vinyl‐2)anthracenes with different length of alkyl chains. Dyes and Pigments 102: 29–34.

37 37 Zhang, X.Q., Ma, Z.Y., Yang, Y. et al. (2014). Influence of alkyl length on properties of piezofluorochromic aggregation induced emission compounds derived from 9,10‐bis[(N‐alkylphenothiazin‐3‐yl)vinyl]anthracene. Tetrahedron 70 (4): 924–929.

38 38 Sun, Q.K., Liu, W., Ying, S.A. et al. (2015). 9,10‐Bis(N‐alkylindole‐3‐yl‐vinyl‐2)anthracenes as a new series of alkyl length‐dependent piezofluorochromic aggregation‐induced emission homologues. RSC Advances 5 (89): 73046–73050.

39 39 Xiong, Y., Yan, X.L., Ma, Y.W. et al. (2015). Regulating the piezofluorochromism of 9,10‐bis(butoxystyryl)anthracenes by isomerization of butyl groups. Chemical Communications 51 (16): 3403–3406.

40 40 Liu, W., Wang, Y.L., Sun, M.X. et al. (2013). Alkoxy‐position effects on piezofluorochromism and aggregation‐induced emission of 9, 10‐bis(alkoxystyryl)anthracenes. Chemical Communications 49 (54): 6042–6044.

41 41 Balasaravanan, R. and Siva, A. (2016). Synthesis, characterization and aggregation induced emission properties of anthracene based conjugated molecules. New Journal of Chemistry 40 (6): 5099–5106.

42 42 Chen, J.‐R., Zhao, J., Xu, B.‐J. et al. (2016). An AEE‐active polymer containing tetraphenylethene and 9,10‐distyrylanthracene moieties with remarkable mechanochromism. Chinese Journal of Polymer Science 35 (2): 282–292.

43 43 Duraimurugan, K., Sivamani, J., Sathiyaraj, M. et al. (2016). Piezoflurochromism and aggregation induced emission properties of 9,10‐bis (trisalkoxystyryl) anthracene derivatives. Journal of Fluorescence 26 (4): 1211–1218.

44 44 Qi, Q.K., Li, C., Liu, X.G. et al. (2017). Solid‐state photoinduced luminescence switch for advanced anticounterfeiting and super‐resolution imaging applications. Journal of the American Chemical Society 139 (45): 16036–16039.

45 45 Guan, W.J., Lu, J., Zhou, W.J. et al. (2014). Aggregation‐induced emission molecules in layered matrices for two‐color luminescence films. Chemical Communications 50 (80): 11895–11898.

46 46 Zhang, J.B., Chen, J.L., Xu, B. et al. (2013). Remarkable fluorescence change based on the protonation–deprotonation control in organic crystals. Chemical Communications 49 (37): 3878–3880.

47 47 Ma, S.Q., Zhang, J.B., Liu, Y.J. et al. (2017). Direct observation of the symmetrical and asymmetrical protonation states in molecular crystals. Journal of Physical Chemistry Letters 8 (13): 3068–3072.

48 48 Shao, B., Jin, R.H., Li, A.S. et al. (2019). Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. Journal of Materials Chemistry C 7 (11): 3263–3268.

49 49 Niu, C.X., You, Y., Zhao, L. et al. (2015). Solvatochromism, reversible chromism and self‐assembly effects of heteroatom‐assisted aggregation‐induced enhanced emission (AIEE) compounds. Chemistry—A European Journal 21 (40): 13983–13990.

50 50 Dong, Y.J., Xu, B., Zhang, J.B. et al. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. Crystengcomm 14 (20): 6593–6598.

51 51 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2017). Tuning the structures and photophysical properties of 9,10‐distyrylanthrance (DSA) via fluorine substitution. New Journal of Chemistry 41 (10): 4220–4233.

52 52 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2015). Influence of halogen atoms on the structures and photophysical properties of 9,10‐distyrylanthracene (DSA). CrystEngComm 17 (47): 9228–9239.

53 53 Zhang, J.B., Ma, S.Q., Fang, H.H. et al. (2017). Insights into the origin of aggregation enhanced emission of 9,10‐distyrylanthracene derivatives. Materials Chemistry Frontiers 1 (7): 1422–1429.

54 54 Chen, J.L., Ma, S.Q., Xu, B. et al. (2013). Molecular crystals based on 9,10‐distyrylanthracene derivatives with high solid state fluorescence efficiency and uniaxial orientation induced by supramolecular interactions. Chinese Science Bulletin 58 (22): 2747–2752.

55 55 Wang, L.J., Xu, B., Zhang, J.B. et al. (2013). Theoretical investigation of electronic structure and charge transport property of 9,10‐distyrylanthracene (DSA) derivatives with high solid‐state luminescent efficiency. Physical Chemistry Chemical Physics 15 (7): 2449–2458.

56 56 Zhang, J.B., Xu, B., Chen, J.L. et al. (2014). An organic luminescent molecule: What will happen when the “butterflies” come together? Advanced Materials 26 (5): 739–745.

57 57 Li, A.S., Liu, Y.J., Han, L. et al. (2019). Pressure‐induced remarkable luminescence‐changing behaviours of 9,10‐distyrylanthracene and its derivatives with distinct substituents. Dyes and Pigments 161: 182–187.

58 58 Chen, J.L., Ma, S.Q., Zhang, J.B. et al. (2015). Low‐loss optical waveguide and highly polarized emission in a uniaxially oriented molecular crystal based on 9,10‐distyrylanthracene derivatives. Acs Photonics 2 (2): 313–318.

59 59 Liu, Y.J., Ma, S.Q., Xu, B. et al. (2017). Construction and function of a highly efficient supramolecular luminescent system. Faraday Discussions 196: 219–229.

60 60 Song, N., Chen, D.‐X., Xia, M.‐C. et al. (2015). Supramolecular assembly‐induced yellow emission of 9,10‐distyrylanthracene bridged bis(pillar[5]arene)s. Chemical Communications 51 (25): 5526–5529.

61 61 Zhang, J.B., Xu, B., Chen, J.L. et al. (2013). Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation‐induced emission. Journal of Physical Chemistry C 117 (44): 23117–23125.

62 62 Xu, B., Zhang, J.B., Fang, H.H. et al. (2014). Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two‐photon absorption cross‐section. Polymer Chemistry 5 (2): 479–488.

63 63 Srujana, P. and Radhakrishnan, T.P. (2018). Impact of molecular orientation on fluorescence emission enhancement in aggregates. Materials Chemistry Frontiers 2 (4): 632–634.

64 64 Chandaluri, C.G. and Radhakrishnan, T.P. (2012). Amorphous‐to‐crystalline transformation with fluorescence enhancement and switching of molecular nanoparticles fixed in a polymer thin film. Angewandte Chemie‐International Edition 51 (47): 11849–11852.

65 65 Srujana, P. and Radhakrishnan, T.P. (2015). Extensively reversible thermal transformations of a bistable, fluorescence‐switchable molecular solid: Entry into functional molecular phase‐change materials. Angewandte Chemie‐International Edition 54 (25): 7270–7274.

66 66 Srujana, P., Gera, T., and Radhakrishnan, T.P. (2016). Fluorescence enhancement in crystals tuned by a molecular torsion angle: A model to analyze structural impact. Journal of Materials Chemistry C 4 (27): 6510–6515.

67 67 Srujana, P. and Radhakrishnan, T.P. (2018). Establishing the critical role of oriented aggregation in molecular solid state fluorescence enhancement. Chemistry—A European Journal 24 (8): 1784–1788.

68 68 Demchenko, A.P. (2010). The concept of lambda‐ratiometry in fluorescence sensing and imaging. Journal of Fluorescence 20 (5): 1099–1128.

69 69 Lee, D.E., Koo, H., Sun, I.C. et al. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews 41 (7): 2656–2672.

70 70 Zhang, X.Y., Zhang, X.Q., Yang, B. et al. (2014). Aggregation‐induced emission dye based luminescent silica nanoparticles: Facile preparation, biocompatibility evaluation and cell imaging applications. RSC Advances 4 (20): 10060–10066.

71 71 Zhang, X.Q., Zhang, X.Y., Wang, S.Q. et al. (2013). Surfactant modification of aggregation‐induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 5 (1): 147–150.

72 72 Kim, S., Ohulchanskyy, T.Y., Pudavar, H.E. et al. (2007). Organically modified silica nanoparticles co‐encapsulating photosensitizing drug and aggregation‐enhanced two‐photon absorbing fluorescent dye aggregates for two‐photon photodynamic therapy. Journal of the American Chemical Society 129 (9): 2669–2675.

73 73 Kim, S., Pudavar, H.E., Bonoiu, A. et al. (2007). Aggregation‐enhanced fluorescence in organically modified silica nanoparticles: A novel approach toward high‐signal‐output nanoprobes for two‐photon fluorescence bioimaging. Advanced Materials 19 (22): 3791–3795.

74 74 Han, W.K., Zhang, S., Qian, J.Y. et al. (2019). Redox‐responsive fluorescent nanoparticles based on diselenide‐containing aiegens for cell imaging and selective cancer therapy. Chemistry—An Asian Journal 14 (10): 1745–1753.

75 75 Lu, H.G., Zhao, X.W., Tian, W.J. et al. (2014). Pluronic F127‐folic acid encapsulated nanoparticles with aggregation‐induced emission characteristics for targeted cellular imaging. RSC Advances 4 (35): 18460–18466.

76 76 Zhang, J.X., Xu, B., Tian, W.J. et al. (2018). Tailoring the morphology of AIEgen fluorescent nanoparticles for optimal cellular uptake and imaging efficacy. Chemical Science 9 (9): 2620–2627.

77 77 Jing, J., Xue, Y.‐R., Liu, Y.‐X. et al. (2020). Co‐assembly of HPV capsid proteins and aggregation‐induced emission fluorogens for improved cell imaging. Nanoscale 12 (9): 5501–5506.

78 78 Ma, K., Liu, G.J., Yan, L.L. et al. (2019). AIEgen based poly(l‐lactic‐co‐glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. Nanomedicine 14 (9): 1191–1201.

79 79 Lu, H.G., Su, F.Y., Mei, Q. et al. (2012). Using fluorine‐containing amphiphilic random copolymers to manipulate the quantum yields of aggregation‐induced emission fluorophores in aqueous solutions and the use of these polymers for fluorescent bioimaging. Journal of Materials Chemistry 22 (19): 9890–9900.

80 80 Zhang, Y., Chen, Y.J., Li, X. et al. (2014). Folic acid‐functionalized AIE Pdots based on amphiphilic PCL‐b‐PEG for targeted cell imaging. Polymer Chemistry 5 (12): 3824–3830.

81 81 Wang, Z.L., Yan, L.L., Zhang, L. et al. (2014). Ultra bright red AIE dots for cytoplasm and nuclear imaging. Polymer Chemistry 5 (24): 7013–7020.

82 82 Zhong, W.Y., Yu, J.S., Huang, W.L. et al. (2001). Spectroscopic studies of interaction of chlorobenzylidine with DNA. Biopolymers 62 (6): 315–323.

83 83 Liu, J.N., Bu, W.B., Pan, L.M. et al. (2012). Simultaneous nuclear imaging and intranuclear drug delivery by nuclear‐targeted multifunctional upconversion nanoprobes. Biomaterials 33 (29): 7282–7290.

84 84 Gottesman, M.M., Fojo, T., and Bates, S.E. (2002). Multidrug resistance in cancer: Role of ATP‐dependent transporters. Nature Reviews Cancer 2 (1): 48–58.

85 85 Kang, B., Mackey, M.A., and El‐Sayed, M.A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces dna damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society 132 (5): 1517–1519.

86 86 Li, H.Y., Zhang, X.Q., Zhang, X.Y. et al. (2014). Biocompatible fluorescent polymeric nanoparticles based on AIE dye and phospholipid monomers. RSC Advances 4 (41): 21588–21592.

87 87 Ma, K., Li, X., Xu, B. et al. (2014). A sensitive and selective “turn‐on” fluorescent probe for Hg2+ based on thymine‐Hg2+‐thymine complex with an aggregation‐induced emission feature. Analytical Methods 6 (7): 2338–2342.

88 88 Ma, K., Wang, H., Li, X. et al. (2015). Turn‐on sensing for Ag+ based on AIE‐active fluorescent probe and cytosine‐rich DNA. Analytical and Bioanalytical Chemistry 407 (9): 2625–2630.

89 89 Li, X., Ma, K., Zhu, S.J. et al. (2014). Fluorescent aptasensor based on aggregation‐induced emission probe and graphene oxide. Analytical Chemistry 86 (1): 298–303.

90 90 Ma, L., Xu, B., Liu, L.J. et al. (2018). A label‐free fluorescent aptasensor for turn‐on monitoring ochratoxin a based on AIE‐active probe and graphene oxide. Chemical Research in Chinese Universities 34 (3): 363–368.

91 91 Zhu, Z.C., Zhou, J., Li, Z. et al. (2015). Dinuclear zinc complex for fluorescent indicator‐displacement assay of citrate. Sensors and Actuators B‐Chemical 208: 151–158.

92 92 Lu, H.G., Xu, B., Dong, Y.J. et al. (2010). Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation‐induced emission characteristics. Langmuir 26 (9): 6838–6844.

93 93 Zhang, S., Ma, L., Ma, K. et al. (2018). Label‐free aptamer‐based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. Acs Omega 3 (10): 12886–12892.

94 94 Li, X., Ma, K., Lu, H.G. et al. (2014). Highly sensitive determination of ssDNA and real‐time sensing of nuclease activity and inhibition based on the controlled self‐assembly of a 9,10‐distyrylanthracene probe. Analytical and Bioanalytical Chemistry 406 (3): 851–858.

95 95 Wang, H., Ma, K., Xu, B. et al. (2016). Tunable supramolecular interactions of aggregation‐induced emission probe and graphene oxide with biomolecules: An approach toward ultrasensitive label‐free and “turn‐on” DNA sensing. Small 12 (47): 6613–6622.

96 96 Ma, K., Wang, H., Li, H. et al. (2017). Label‐free detection for SNP using AIE probes and carbon nanotubes. Sensors and Actuators B—Chemical 253: 92–96.

97 97 Wang, Z.L., Ma, K., Xu, B. et al. (2013). A highly sensitive “turn‐on” fluorescent probe for bovine serum albumin protein detection and quantification based on AIE‐active distyrylanthracene derivative. Science China—Chemistry 56 (9): 1234–1238.

98 98 Sun, B.J., Yang, X.J., Ma, L. et al. (2013). Design and application of anthracene derivative with aggregation‐induced emission charateristics for visualization and monitoring of erythropoietin unfolding. Langmuir 29 (6): 1956–1962.

99 99 Ma, K., Wang, H., Li, H.L. et al. (2016). A label‐free aptasensor for turn‐on fluorescent detection of ATP based on AIE‐active probe and water‐soluble carbon nanotubes. Sensors and Actuators B—Chemical 230: 556–558.

Handbook of Aggregation-Induced Emission, Volume 2

Подняться наверх