Читать книгу Smart Systems for Industrial Applications - Группа авторов - Страница 48
2.5 Genetic Algorithm
ОглавлениеGA is an adaptive empirical search algorithm depends on the mutative concepts of natural selection and genetics. It emphasizes the intellectual manipulation in finding solution to the optimization problems. Based on the historical information, GA searches for random variables through the best performance region of the search space. GA technique resembles the survival of the fittest principle proposed by Charles Darwin. In view of nature’s law, competition or struggle among the individuals results in the fittest predominating the inferior ones.
Alike chromosomes in DNA, the population in every generation has certain character strings impinged from the parent. In the search space each one of the individual signifies a point and has a feasible solution. The next stage through which the individuals undergo is the evolution process. Every individual in the population strives for the best position and mates. The fittest individual competes and yields offspring, whereas the inferior individuals will not proceed to the successive process. In every generation, the offspring thus produced from the fittest parent will be more suitable for the environment.