Читать книгу Muography - Группа авторов - Страница 56
REFERENCES
Оглавление1 Ambrosino, F., Anastasio, A., Bross, A., Béné, S., Boivin, P., Bonechi, L., et al. (2015). Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors. Journal of Geophysical Research Solid Earth, 120, 7290–7307. https://doi.org/10.1002/2015JB011969
2 Barnoud, A., Cayol, V., Niess, V., Cârloganu, C., Lelièvre, P., Labazuy, P., & Le Ménédeu, E. (2019). Bayesian joint muographic and gravimetric inversion applied to volcanoes. Geophysical Journal International, 218(3), 2179–2194. https://doi.org/10.1093/gji/ggz300
3 Battaglia, M., Gottsmann, J., Carbone, D., & Fernández, J. (2008). 4D volcano gravimetry. Geophysics, 73(6), WA3–18. https://doi.org/10.1190/1.2977792
4 Carbone, D., Budetta, G., Greco, F., & Zuccarello, L. (2007). A data sequence acquired at Mt. Etna during the 2002–2003 eruption highlights the potential of continuous gravity observations as a tool to monitor and study active volcanoes. Journal of Geodynamics, 43(2), 320–329. https://doi.org/10.1016/j.jog.2006.09.012
5 Cosburn, K., Mousumi, R., Guardincerri, E., & Rowe, C. (2019). Joint inversion of gravity with cosmic ray muon data at a well‐characterized site for shallow subsurface density prediction. Geophysical Journal International, 217(3), 1988–2002. https://doi.org/10.1093/gji/ggz127
6 Davis, K., & Oldenburg, D. W. (2012). Joint 3D inversion of muon tomography and gravity data to recover density. ASEG Extended Abstracts, 1, 1–4. https://doi.org/10.1071/ASEG2012ab172
7 Gibert, D., de Bremond d'Ars, J., Carlus, B., Deroussi, S., Ianigro, J‐C., Jessop, D., et al. (2021). Observation of the dynamics of hydrothermal activity in La Soufrière of Guadeloupe volcano with joint muography, gravimetry, electrical resistivity tomography, seismic, and temperature monitoring. In: L. Oláh, H. K. M. Tanaka, D. Varga (eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
8 Gómez, H., Gibert, D., Goy, C., Jourde, K., Karyotakis, Y., Katsanevas, S., et al. (2017). Forward scattering effects on muon imaging. Journal of Instrumentation, 12, P12018. https://doi.org/10.1088/1748‐0221/12/12/P12018
9 Hamar, G., Surányi, G., Oláh, L. & Varga, D. (2021). Exploration of underground cave systems with muography. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
10 Hernández, P. A., Miyamoto, S., Tiukov, V., Barrancos, J., Sirignano, C., Nishiyama, R., et al. (2016). Cosmic muon imaging: a challenging application to investigate deeper volcanic structures in Canary Islands, Spain. Near Surface Geophysics, 14, 391–401. https://doi.org/10.1002/nsg.145001
11 Hofmann‐Wellenhof, B., & Moritz, H. (2006). Physical Geodesy. Berlin/Heidelberg: Springer Science & Business Media.
12 Jourde, K., Gibert, D., Marteau, J., de Bremond d'Ars J., Gardien, S., Girerd, C., et al. (2013). Experimental detection of upward going cosmic particles and consequences for correction of density radiography of volcanoes. Geophysical Research Letters, 40, 6334–6339. https://doi.org/10.1002/2013GL058357
13 Jourde, K., Gibert, D., & Marteau, J. (2015). Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies. Geoscientific Instrumentation, Methods and Data Systems, 4, 177–188. https://doi.org/10.5194/gi‐4‐177‐2015
14 Jourde, K., Gibert, D., Marteau, J., de Bremond d'Ars J., Komorowski, J.‐C. (2016). Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano. Scientific Reports, 6, 33406. https://doi.org/10.1038/srep33406
15 Lelièvre, P. G., Barnoud, A., Niess, V., Cârloganu, C., Cayol, V., & Farquharson, C. G. (2019). Joint inversion methods with relative density offset correction for muon tomography and gravity data, with application to volcano imaging. Geophysical Journal International, 218(3), 1685–1701. https://doi.org/10.1093/gji/ggz251
16 Lo Presti, D., Gallo, G., Bonanno, D. L., Bonanno, G., Ferlito, C., La Rocca, P., et al. (2021). Three years of muography at Mount Etna: Results and interpretation. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
17 Macedonio, G., Saracino, G., Ambrosino, F., Baccani, G., Bonechi, L., Bross, A., et al. (2021). Muography of the volcanic structure of the summit of Vesuvius. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
18 Ménoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., & Desruelle, B. (2018). Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Scientific Reports, 8, 12300. https://doi.org/10.1038/s41598‐018‐30608‐1
19 Nagahara, S., & Miyamoto, S. (2018). Feasibility of three‐dimensional density tomography using dozens of muon radiographies and filtered back projection for volcanos. Geoscientific Instrumentation, Methods and Data Systems, 7, 307–316. https://doi.org/10.5194/gi‐7‐307‐2018
20 Nagy, D. (1966). The gravitational attraction of a right rectangular prism. Geophysics, 31(2), 362–371. https://doi.org/10.1190/1.1439779
21 Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R., & Klopping, F. (1995) A new generation of absolute gravimeters. Metrologia, 32(3), 159–180. https://doi.org/10.1088/0026‐1394/32/3/004
22 Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., & Maekawa, T. (2014). Integrated processing of muon radiography and gravity anomaly data toward the realization of high‐resolution 3‐D density structural analysis of volcanoes: Case study of Showa‐Shinzan Lava Dome, Usu, Japan. Journal of Geophysical Research Solid Earth, 119, 699–710. https://doi.org/10.1002/2013JB010234
23 Nishiyama, R., Miyamoto, S., Okubo, S., Oshima, H., & Maekawa, T. (2017). 3D density modeling with gravity and muon‐radiographic observations in Showa‐Shinzan lava dome, Usu, Japan. Pure Applied Geophysics, 174, 1061–1070. https://doi.org/10.1007/s00024‐016‐1430‐9
24 Okubo, S. (2020). Advances in gravity analyses for studying volcanoes and earthquakes. Proceedings of the Japan Academy, Series B, 96(2), 50–69. https://doi.org/10.2183/pjab.96.005
25 Oláh, L. & Tanaka, H. K. M. (2021). Muography of magma intrusion beneath the active craters of Sakurajima volcano. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
26 Parasnis, D. S. (1997). Principles of Applied Geophysics, 5th edition. Springer Netherlands, 456 pp.
27 Plouff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41(4), 727–741. https://doi.org/10.1190/1.1440645
28 Portal, A., Gailler, L.‐S., Labazuy, P., & Lénat, J.‐F. (2016). Geophysical imaging of the inner structure of a lava dome and its environment through gravimetry and magnetism. Journal of Volcanology and Geothermal Research, 320, 88–99. https://doi.org/10.1016/j.jvolgeores.2016.04.012
29 Rosas‐Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski, J.‐C., & Gibert, D. (2017). Three‐dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data. Geophysical Research Letters, 44, 6743–6751. https://doi.org/10.1002/2017GL074285
30 Roy, M., Lewis, M., Johnson, A., George, N., Rowe, C., & Guardincerri, E. (2018). Inferring shallow subsurface density structure from surface and underground gravity measurements: Calibrating models for relatively undeformed volcanic strata at the Jemez Volcanic Field, New Mexico, USA. Pure Applied Geophysics 175, 1003–1018. https://doi.org/10.1007/s00024‐017‐1742‐4
31 Saracino, G., Ambrosino, F., Bonechi, L., Bross, A., Cimmino, L., Ciaranfi, R., D’Alessandro, R. (2017). The MURAVES muon telescope: technology and expected performances. Annals of Geophysics, 60, 1, S0103. https://doi.org/10.4401/ag‐7378
32 Scampoli, P., Nishiyama, R., Ariga, A., Ariga, T., Ereditato, A., Lechmann, A., Mair, D., Pistillo, C., Schlunegger, F. & Vladymyrov, M. (2021). Exploration of Hidden Topography Beneath Alpine Glaciers with Muography. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth’s Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
33 Scandone, R. (1990). Chaotic collapse of calderas. Journal of Volcanology and Geothermal Research, 42, 285–302. https://doi.org/10.1016/0377‐0273(90)90005‐Z
34 Schouten, D., Furseth, D. & van Nieuwkoop, J. (2021). Muon tomography for underground resources. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
35 Seigel, H. O., Brcic, I. & Mistry, P. (1993). A Guide to High Precision Land Gravimeter Surveys, in Scintrex Ltd., Concord, Ont., Canada.
36 Si, H. (2015). TetGen, a delaunay‐based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software, 41(2), https://doi.org/10.1145/2629697
37 Tanaka, H. K. M. (2021). Principles of muography and pioneering works. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
38 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Ohshima, H., Maekawa, T., et al. (2007). Imaging the conduit size of the dome with cosmic‐ray muons: The structure beneath Showa‐Shinzan Lava Dome, Japan. Geophysical Research Letters, 34, L22311. https://doi.org/10.1029/2007GL031389
39 Tanaka, H. K. M., Taira, H., Uchida, T., Tanaka, M., Takeo, M., Ohminato, T., et al. (2010). Three‐dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography. Journal of Geophysical Research, 115, B12332. https://doi.org/10.1029/2010JB007677
40 Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717921
41 Thompson, L. F., Gluyas, J. G., Klinger, J., Kudryavtsev, V. A., Lincoln, D. L., Woodward, D., et al. (2021). Muography, a key technology for monitoring carbon geostorage. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
42 Tioukov, V., Giudicepietro, F., Macedonio, G., Calvari, S., Di Traglia, F., Fornaciai, A., et al. (2021). Structure of the shallow supply system at Stromboli Volcano through integration of muography, digital elevation models, seismicity, and ground deformation data. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth's Subsurface with Elementary Particles, Geophysical Monograph Series 270. Washington, DC: American Geophysical Union. This volume.
43 Torge, W., & Müller, J. (2012). Geodesy 4th Edition. Berlin: De Gruyter. https://doi.org/10.1515/9783110250008
44 Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O. & Caudron, C. (2017). Geophysics from terrestrial time‐variable gravity measurements. Reviews of Geophysics, 55, 938–992. https://doi.org/10.1002/2017RG000566
45 Yokoyama, I. & Ohkawa, S. (1986). The subsurface structure of the AIRA caldera and its vicinity in southern Kyushu, Japan. Journal of Volcanology and Geothermal Research, 30, 253–282. https://doi.org/10.1016/0377‐0273(86)90057‐0