Читать книгу X-Ray Fluorescence in Biological Sciences - Группа авторов - Страница 29

References

Оглавление

1 1 Beckhoff, B., Kanngieber, B., Langhoff, N. et al. (2006). Handbook of Practical X‐ray Fluorescence Analysis. Springer ISBN: 3‐540‐28603‐9.

2 2 Lindon, J., Tranter, G., and Holmes, J. (2000). Encyclopedia of Spectroscopy & Spectrometry, Chapter: X‐ray Fluorescence Spectroscopy – Applications, 2478–2487. London: Academia Press Ltd.

3 3 Our Techniques [internet]. San Diego: Eurofins EAG Laboratories; [2015–2021] [cited Apr 2021]. https://www.eag.com/techniques (accessed November 2021).

4 4 Montaser, A. and Golightly, D.W. (1992). Inductively Coupled Plasmas in Analytical Atomic Spectrometry. New York: VCH Publishers, Inc.

5 5 Radziemski Leon, J. and Cremers David, A. (2006). Handbook of Laser‐Induced Breakdown Spectroscopy. New York: Wiley ISBN: 0‐470‐09299‐8.

6 6 Flude, S., Haschke, M., and Storey, M. (2016). Application of benchtop micro‐XRF to geological materials. Miner. Mag. 81 (4): 923–948.

7 7 Weiss, T. (2005). Weiss J. Handbook of Ion Chromatography, Weinheim: Wiley‐VCH ISBN: 978‐3‐527‐28701‐7.

8 8 Haschke, M. (2014). Micro‐X‐ray fluorescence‐Instrumentation and application. Berlin: Springer.

9 9 Janssens, K., Adams, F.C.V., and Rindby, A. (2000). Micro‐X‐ray fluorescence analysis. Chichester: Wiley.

10 10 Jenkins, R., Gould, R., and Gedcke, D. (1981). Quantitative X‐ray spectrometry. New York: Marcel Dekker.

11 11 van der Ent, A., Przybyłowicz, W.J., de Jonge, M.D. et al. (2018). X‐ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol. 218: 432–452.

12 12 Gholap, D.S., Izmer, A., Samber, B.D. et al. (2010). Comparison of laser ablation‐inductively coupled plasma‐mass spectrometry and micro‐X‐ray fluorescence spectrometry for elemental imaging in Daphnia magna. Anal. Chim. Acta 664 (2010): 19–26.

13 13 Brown, B.E. (1982). The form and function of metal‐containing “granules” in invertebrate tissues. Biol. Rev. 57: 621–667.

14 14 Balcaen, L., De Schamphelaere, K.A.C., Janssen, C.R. et al. (2008). Development of a method for assessing the relative contribution of waterborne and dietary exposure to zinc bioaccumulation in Daphnia magna by using isotopically enriched tracers and ICP‐MS detection. Anal. Bioanal. Chem. 390: 555–569.

15 15 Jaswal, B.B.S., Rai, P.K., Singh, T. et al. (2019). Detection and Quantification of heavy metal elements in gallstones using X‐Ray fluorescence spectrometry. X‐Ray Spectrom.: 1–10.

16 16 Singh, V.K., Jaswal, B.B.S., Sharma, J., and Rai, P.K. (2020). Analysis of stones formed in the human gall bladder and kidney using advanced spectroscopic techniques. Biophys. Rev. 12: 647–668.

17 17 Singh, V.K., Sharma, J., Pathak, A.K. et al. (2018). Laser‐induced breakdown spectroscopy (LIBS): a novel technology for identifying microbes causing infectious diseases. Biophys. Rev. 10: 1221–1239.

18 18 Singh, V.K. and Rai, P.K. (2014). Kidney stone analysis techniques and role of major and trace elements affecting their pathogenesis: a review. Biophys. Rev. 6 (3–4): 291–310.

19 19 Kinsey, J.L. (1977). Laser‐induced fluorescence. Annu. Rev. Phys. Chem. 28 (1): 349–372.

20 20 Clare, P. M. and Rhodes, W. F. (ed). Campbell, J.L. (1998). Particle‐induced X‐ray emission (PIXE). In: Geochemistry. In: Encyclopedia of Earth Science. Dordrecht: Springer.

21 21 Garman, E.F. et al. (2005). Elemental analysis of proteins by micro‐PIXE. Progr. Biophys. Mol. Biol., Elsevier 89 (2): 173–205.

22 22 Dimitriou, P., Becker, H.W., Bogdanović‐Radović, I. et al. (2016). Development of a reference database for particle‐induced gamma‐ray emission spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 371: 33–36.

23 23 Haschke, M. and Boehm, S. (2017). Micro‐XRF in scanning electron microscopes. Adv. Imaging Electron Phys. 199: 1–60.

24 24 Bjeoumikhov, A., Arkadiev, V., Eggert, F. et al. (2005). A new microfocus X‐ray source, iMOXS, for highly sensitive XRF analysis in scanning electron microscopes. X‐Ray Spectrom. 34: 493.

25 25 Haschke, M., Eggert, F., and Elam, W.T. (2007). Micro‐XRF excitation in an SEM. X‐Ray Spectrom. 36: 254–259.

26 26 Bonvin, D. (2019). Analysis of clinker and cement with Thermo Scientific ARL OPTIM’X WDXRF sequential spectrometer. Switzerland: Thermo Fisher Scientific https://assets.thermofisher.com/TFS‐Assets/CAD/Application‐Notes/Analysis‐Clinker‐Cement‐ARL‐OPTIMX‐WDXRF‐41732.pdf

27 27 Fiege, A. and Behrens, K. (2020). Cement: Process‐related analysis of all materials up to the finished product with XRF. https://www.bruker.com/de/news‐and‐events/webinars/2020/process‐related‐analysis‐of‐all‐materials‐up‐to‐the‐finished‐product‐with‐XRF.html.

28 28 Yearly, R. (2015). Better Together: XRF and XRD [internet]. United States: ThermoFisher Scientific https://www.thermofisher.com/blog/mining/better‐together‐xrf‐and‐xrd/.

29 29 Aibéo, C.L., Goffin, S., Schalm, O. et al. (2008). Micro‐Raman analysis for the identification of pigments from 19th and 20th century paintings. J. Raman Spectrosc. 8: 1091–1098.

30 30 Presser, V., Keuper, M., Berthold, C., and Nickel, K.G. (2009). Experimental determination of the Raman sampling depth in zirconia ceramics. Appl. Spectrosc. 63–11: 1288–1292.

X-Ray Fluorescence in Biological Sciences

Подняться наверх