Читать книгу Analytical Methods for Environmental Contaminants of Emerging Concern - Группа авторов - Страница 27

Bibliography

Оглавление

1 Carvalho, F.P. (2017). Pesticides, environment, and food safety. Food Energy Secur. 6: 48–60. doi: 10.1002/fes3.108.

2 Pietrzak, D., Kania, J., Malina, G., Kmiecik, E., and Wator, K. (2019). Pesticides from the EU first and second watch lists in the water environment. Clean Soil Air Water 47: 1–13. doi: 10.1002/clen.201800376.

3 Samsidar, A., Siddiquee, S., and Shaarani, S.M. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 71: 188–201. doi: 10.1016/j.tifs.2017.11.011.

4 Nasiri, M., Ahmadzadeh, H., and Amiri, A. (2020). Sample preparation and extraction methods for pesticides in aquatic environments: a review. Trends Anal. Chem. 123: 115772. doi: 10.1016/j.trac.2019.115772.

5 Choudri, B.S., Charabi, Y., Al-Nasiri, N., and Al-Awadhi, T. (2020). Pesticides and herbicides. Water Environ. Res. 92: 1425–1432. doi: 10.1002/wer.1380.

6 Ochoa, V. and Maestroni, B. (2018). Pesticides in water, soil, and sediments. In: Integrated Analytical Approaches for Pesticide Management, 1st ed. (ed. B. Maestroni and A. Cannavan), 133–147. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-816155-5.00009-9.

7 Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., and Megharaj, M. (2019). Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci. Total Environ. 654: 177–189. doi: 10.1016/j.scitotenv.2018.11.041.

8 Hernández, F., Bakker, J., Bijlsma, L., de Boer, J., Botero-Coy, A.M., Bruinen de Bruin, Y., Fischer, S., Hollander, J., Kasprzyk-Hordern, B., Lamoree, M., López, F.J., Ter Laak, T.L., van Leerdam, J.A., Sancho, J.V., Schymanski, E.L., de Voogt, P., and Hogendoorn, E.A. (2019). The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere 222: 564–583. doi: 10.1016/j.chemosphere.2019.01.118.

9 European Union (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC. 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union L348: 84–97.

10 10 European Union (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union L226: 1–17.

11 11 European Union (2020). Commission implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Official Journal of the European Union L257: 32–35.

12 12 European Union (2015). Commission Directive (EU) 2015/1787 of 6 October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Official Journal of the European Union L260: 6–17.

13 13 European Union (2006). Directive 2006/118/EC of the European parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union L372: 19–31.

14 14 US EPA (2020). Water quality criteria. https://www.epa.gov/wqc. Accessed 14 December 2021.

15 15 US EPA (2020). National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Organic. Accessed 14 December 2021.

16 16 US EPA (2020) Main water legislation. https://www.epa.ie/water/waterleg. Accessed 14 December 2021.

17 17 Spanish Ministry of Presidency (2005). Royal Decree 9/2005 of 14 January which establishes a list of potentially soil contaminating activities and criteria and standards for declaring that sites are contaminated. Official Gazette of the Spanish State 15: 1833–1843.

18 18 Wong, K.L.K., Webb, D.T., Nagorzanski, M.R., Kolpin, D.W., Hladik, M.L., Cwiertny, D.M., and LeFevre, G.H. (2019). Chlorinated byproducts of neonicotinoids and their metabolites: an unrecognized human exposure potential? Environ. Sci. Technol. Lett. 6: 98–105. doi: 10.1021/acs.estlett.8b00706.

19 19 Kiss, A. and Virág, D. (2009). Photostability and photodegradation pathways of distinctive pesticides. J. Environ. Qual. 38: 157–163. doi: 10.2134/jeq2007.0504.

20 20 Ibáñez, M., Sancho, J.V., Pozo, Ó.J., and Hernández, F. (2006). Use of liquid chromatography quadrupole time-of-flight mass spectrometry in the elucidation of transformation products and metabolites of pesticides. Diazinon as a case study. Anal. Bioanal. Chem. 384: 448–457. doi: 10.1007/s00216-005-0167-6.

21 21 Li, M., Wang, R., Kong, Z., Gao, T., Wang, F., and Fan, B. (2020). Cyflumetofen degradation in different aquatic environments and identification of hydrolytic products. J. Environ. Chem. Eng. 8: 104512. doi: 10.1016/j.jece.2020.104512.

22 22 Hensen, B., Olsson, O., and Kümmerer, K. (2020). A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. Environ. Int. 137: 105533. doi: 10.1016/j.envint.2020.105533.

23 23 Fonseca, E., Renau-Pruñonosa, A., Ibáñez, M., Gracia-Lor, E., Estrela, T., Jiménez, S., Pérez-Martín, M.A., González, F., Hernández, F., and Morell, I. (2019). Investigation of pesticides and their transformation products in the Júcar River Hydrographical Basin (Spain) by wide-scope high-resolution mass spectrometry screening. Environ. Res. 177: 108570. doi: 10.1016/j.envres.2019.108570.

24 24 Quintana, J., de La Cal, A., and Boleda, M.R. (2019). Monitoring the complex occurrence of pesticides in the Llobregat basin, natural and drinking waters in Barcelona metropolitan area (Catalonia, NE Spain) by a validated multi-residue online analytical method. Sci. Total Environ. 692: 952–965. doi: 10.1016/j.scitotenv.2019.07.317.

25 25 Fisher, I.J., Phillips, P.J., Bayraktar, B.N., Chen, S., McCarthy, B.A., and Sandstrom, M.W. (2021). Pesticides and their degradates in groundwater reflect past use and current management strategies, Long Island, New York, USA. Sci. Total Environ. 752: 141895. doi: 10.1016/j.scitotenv.2020.141895.

26 26 Kiefer, K., Müller, A., Singer, H., and Hollander, J. (2019). New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 165: 114972. doi: 10.1016/j.watres.2019.114972.

27 27 Reemtsma, T., Alder, L., and Banasiak, U. (2013). Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. Water Res. 47: 5535–5545. doi: 10.1016/j.watres.2013.06.031.

28 28 Lopez-Ruiz, R., Romero-González, R., and Garrido-Frenich, A. (2019). Residues and dissipation kinetics of famoxadone and its metabolites in environmental water and soil samples under different conditions. Environ. Pollut. 252: 163–170. doi: 10.1016/j.envpol.2019.05.123.

29 29 Tiwari, M.K. and Guha, S. (2013). Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ. Monit. Assess. 185: 8451–8463. doi: 10.1007/s10661-013-3186-3.

30 30 Peterson, M.A., McMaster, S.A., Riechers, D.E., Skelton, J., and Stahlman, P.W. (2016). 2,4-D past, present, and future: a review. Weed Technol. 30: 303–345. doi: 10.1614/wt-d-15-00131.1.

31 31 Pietrzak, D., Kania, J., Kmiecik, E., Malina, G., and Wator, K. (2020). Fate of selected neonicotinoid insecticides in soil–water systems: current state of the art and knowledge gaps. Chemosphere 255 (126981). doi: 10.1016/j.chemosphere.2020.126981.

32 32 Dereumeaux, C., Fillol, C., Quenel, P., and Denys, S. (2020). Pesticide exposures for residents living close to agricultural lands: a review. Environ. Int. 134: 105210. doi: 10.1016/j.envint.2019.105210.

33 33 Nascimento, M.M., Da Rocha, G.O., and De Andrade, J.B. (2018). Pesticides in the atmospheric environment: an overview on their determination methodologies. Anal. Methods. 10: 4484–4504. doi: 10.1039/c8ay01327f.

34 34 Stehle, S., Bline, A., Bub, S., Petschick, L.L., Wolfram, J., and Schulz, R. (2019). Aquatic pesticide exposure in the U.S. as a result of non-agricultural uses. Environ. Int. 133: 105234. doi: 10.1016/j.envint.2019.105234.

35 35 European Environment Agency (2018). European waters. Assessment of status and pressures 2018. EEA Report No 7/2018. Available at: https://www.eea.europa.eu/publications/state-of-water. Accessed 14 December 2021.

36 36 Sjerps, R.M.A., Kooij, P.J.F., van Loon, A., and Van Wezel, A.P. (2019). Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235: 510–518. doi: 10.1016/j.chemosphere.2019.06.207.

37 37 Pérez, D.J., Iturburu, F.G., Calderon, G., Oyesqui, L.A.E., De Gerónimo, E., and Aparicio, V.C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263: 128061. doi: 10.1016/j.chemosphere.2020.128061.

38 38 Ordaz-Guillén, Y., Galíndez-Mayer, C.J., Ruiz-Ordaz, N., Juárez-Ramírez, C., Santoyo-Tepole, F., and Ramos-Monroy, O. (2014). Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ. Sci. Pollut. Res. 21: 8765–8773. doi: 10.1007/s11356-014-2809-8.

39 39 Magnoli, K., Carranza, C.S., Aluffi, M.E., Magnoli, C.E., and Barberis, C.L. (2020). Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 27: 38501–38512. doi: 10.1007/s11356-020-10370-6.

40 40 Andreu, V. and Picó, Y. (2012). Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 404: 2659–2681. doi: 10.1007/s00216-012-6331-x.

41 41 Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., and Vandenbulcke, F. (2014). Pesticides and earthworms: a review. Agron. Sustain. Dev. 34: 199–228. doi: 10.1007/s13593-013-0151-z.

42 42 Schäfer, S., Buchmeier, G., Claus, E., Duester, L., Heininger, P., Körner, A., Mayer, P., Paschke, A., Rauert, C., Reifferscheid, G., Rüdel, H., Schlechtriem, C., Schröter-Kermani, C., Schudoma, D., Smedes, F., Steffen, D., and Vietoris, F. (2015). Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ. Sci. Eur. 27: 5. doi: 10.1186/s12302-014-0036-z.

43 43 Olisah, C., Okoh, O.O., and Okoh, A.I. (2020). Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: a two-decade review. Heliyon 6: e03518. doi: 10.1016/j.heliyon.2020.e03518.

44 44 Girones, L., Oliva, A.L., Marcovecchio, J.E., and Arias, A.H. (2020). Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments. Curr. Environ. Heal. Reports 7: 147–160. doi: 10.1007/s40572-020-00272-7.

45 45 Lupi, L., Bedmar, F., Wunderlin, D.A., and Miglioranza, K.S.B. (2019). Levels of organochlorine pesticides in soils, mesofauna and streamwater from an agricultural watershed in Argentina. Environ. Earth Sci. 78: 1–9. doi: 10.1007/s12665-019-8579-3.

46 46 Masiá, A., Campo, J., Vázquez-Roig, P., Blasco, C., and Picó, Y. (2013). Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. Hazard. Mater. 263: 95–104. doi: 10.1016/j.jhazmat.2013.09.035.

47 47 Belenguer, V., Martinez-Capel, F., Masiá, A., and Picó, Y. (2014). Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (eastern Spain). J. Hazard. Mater. 265: 271–279. doi: 10.1016/j.jhazmat.2013.11.016.

48 48 Masiá, A., Campo, J., Navarro-Ortega, A., Barceló, D., and Picó, Y. (2015). Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci. Total Environ. 503–504: 58–68. doi: 10.1016/j.scitotenv.2014.06.095.

49 49 Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., and Barceló, D. (2016). Pesticides in the Ebro River basin: occurrence and risk assessment. Environ. Pollut. 211: 414–424. doi: 10.1016/j.envpol.2015.12.059.

50 50 Maceira, A., Marcé, R.M., and Borrull, F. (2020). Analytical methods for determining organic compounds present in the particulate matter from outdoor air. Trends Anal. Chem. 122: 115707. doi: 10.1016/j.trac.2019.115707.

51 51 Sanjuán-Herráez, D., Rodríguez-Carrasco, Y., Juan-Peiró, L., Pastor, A., and de La Guardia, M. (2011). Determination of indoor air quality of a phytosanitary plant. Anal. Chim. Acta 694: 67–74. doi: 10.1016/j.aca.2011.03.039.

52 52 Batterman, S.A., Chernyak, S.M., Gounden, Y., Matooane, M., and Naidoo, R.N. (2008). Organochlorine pesticides in ambient air in Durban, South Africa. Sci. Total Environ. 397: 119–130. doi: 10.1016/j.scitotenv.2008.02.033.

53 53 Duong, H.T., Kadokami, K., Trinh, H.T., Phan, T.Q., Le, G.T., Nguyen, D.T., Nguyen, T.T., and Nguyen, D.T. (2019). Target screening analysis of 970 semi-volatile organic compounds adsorbed on atmospheric particulate matter in Hanoi, Vietnam. Chemosphere 219: 784–795. doi: 10.1016/j.chemosphere.2018.12.096.

54 54 Anh, H.Q., Tomioka, K., Tue, N.M., Tuyen, L.H., Chi, N.K., Minh, T.B., Viet, P.H., and Takahashi, S. (2019). A preliminary investigation of 942 organic micro-pollutants in the T atmosphere in waste processing and urban areas, northern Vietnam: levels, potential sources, and risk assessment. Ecotoxicol. Environ. Saf. 167: 354–364. doi: 10.1016/j.ecoenv.2018.10.026.

55 55 Guida, Y.D.S., Meire, R.O., Torres, J.P.M., and Malm, O. (2018). Air contamination by legacy and current-use pesticides in Brazilian mountains: an overview of national regulations by monitoring pollutant presence in pristine areas. Environ. Pollut. 242: 19–30. doi: 10.1016/j.envpol.2018.06.061.

56 56 Coscollà, C., León, N., Pastor, A., and Yusà, V. (2014). Combined target and post-run target strategy for a comprehensive analysis of pesticides in ambient air using liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. A 1368: 132–142. doi: 10.1016/j.chroma.2014.09.067.

57 57 Coscollá, C., Hart, E., Pastor, A., and Yusà, V. (2013). LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. Atmos. Environ. 77: 394–403. doi: 10.1016/j.atmosenv.2013.05.022.

58 58 Nascimento, M.M., Da Rocha, G.O., and De Andrade, J.B. (2017). Pesticides in fine airborne particles: from a green analysis method to atmospheric characterization and risk assessment. Sci. Rep. 7: 1–11. doi: 10.1038/s41598-017-02518-1.

59 59 Pinasseau, L., Wiest, L., Volatier, L., Mermillod-Blondin, F., and Vulliet, E. (2020). Emerging polar pollutants in groundwater: potential impact of urban stormwater infiltration practices. Environ. Pollut. 266: 115387. doi: 10.1016/j.envpol.2020.115387.

60 60 Vrana, B., Smedes, F., Prokeš, R., Loos, R., Mazzella, N., Miege, C., Budzinski, H., Vermeirssen, E., Ocelka, T., Gravell, A., and Kaserzon, S. (2016). An interlaboratory study on passive sampling of emerging water pollutants. Trends Anal. Chem. 76: 153–165. doi: 10.1016/j.trac.2015.10.013.

61 61 Yu, Y., Liu, X., He, Z., Wang, L., Luo, M., Peng, Y., and Zhou, Q. (2016). Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 8: 2463–2470. doi: 10.1039/c6ay00337k.

62 62 Gerónimo, E., Botero-Coy, A.M., Marín, J.M., Aparicio, V.C., Costa, J.L., Sancho, J.V., and Hernández, F. (2015). A simple and rapid analytical methodology based on liquid chromatography-tandem mass spectrometry for monitoring pesticide residues in soils from Argentina. Anal. Methods. 7: 9504–9512. doi: 10.1039/c5ay01582k.

63 63 Hu, J.Y., Zhen, Z.H., and Deng, Z.B. (2011). Simultaneous determination of acetochlor and propisochlor residues in corn and soil by solid phase extraction and gas chromatography with electron capture detection. Bull. Environ. Contam. Toxicol. 86: 95–100. doi: 10.1007/s00128-010-0130-x.

64 64 Bragança, I., Lemos, P.C., Delerue-Matos, C., and Domingues, V.F. (2019). Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils. Environ. Sci. Pollut. Res. 26: 2987–2997. doi: 10.1007/s11356-018-3690-7.

65 65 Zhao, P., Zhao, J., Lei, S., Guo, X., and Zhao, L. (2018). Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry. Chemosphere 204: 210–219. doi: 10.1016/j.chemosphere.2018.03.204.

66 66 Sørensen, L., Silva, M.S., Meier, S., and Booth, A.M. (2015). Advances in miniaturization and increasing sensitivity in analysis of organic contaminants in marine biota samples. Trends Environ. Anal. Chem. 6–7: 39–47. doi: 10.1016/j.teac.2015.03.001.

67 67 Lundqvist, J., Von Brömssen, C., Rosenmai, A.K., Ohlsson, A., Le Godec, T., Jonsson, O., Kreuger, J., and Oskarsson, A. (2019). Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environ. Sci. Eur. 31: 53. doi: 10.1186/s12302-019-0241-x.

68 68 Hashmi, T.A., Qureshi, R., Tipre, D., and Menon, S. (2019). Investigation of pesticide residues in water, sediments and fish samples from Tapi River, India as a case study and its forensic significance. Environ. Forensics. 21: 1–10. doi: 10.1080/15275922.2019.1693441.

69 69 Ruiz-Gil, L., Romero-González, R., Garrido Frenich, A., and Martínez Vidal, J.L. (2008). Determination of pesticides in water samples by solid phase extraction and gas chromatography tandem mass spectrometry. J. Sep. Sci. 31: 151–161. doi: 10.1002/jssc.200700299.

70 70 Xie, H., Chen, J., Huang, Y., Zhang, R., Chen, C.E., Li, X., and Kadokami, K. (2020). Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: occurrence, distribution, and ecological risk. Environ. Pollut. 267: 115436. doi: 10.1016/j.envpol.2020.115436.

71 71 Wan, Y., Tran, T.M., Nguyen, V.T., Wang, A., Wang, J., and Kannan, K. (2021). Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci. Total Environ. 750: 141507. doi: 10.1016/j.scitotenv.2020.141507.

72 72 Fauvelle, V., Mazzella, N., Morin, S., Moreira, S., Delest, B., and Budzinski, H. (2015). Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water. Environ. Sci. Pollut. Res. 22: 3988–3996. doi: 10.1007/s11356-014-2876-x.

73 73 Tan, B., Xiong, J., Li, H., and You, J. (2020). Simultaneous analysis of current‐use pesticides and their transformation products in water using mixture‐sorbent solid phase extraction and high‐performance liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 43: 2409–2418. doi: 10.1002/jssc.202000115.

74 74Čelić, M., Jaén-Gil, A., Briceño-Guevara, S., Rodríguez-Mozaz, S., Gros, M., and Petrovic, M. (2021). Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. J. Hazard. Mater. 404: 124102. doi: 10.1016/j.jhazmat.2020.124102.

75 75 Schulze, T., Ahel, M., Ahlheim, J., Ait-Aissa, S., Brion, F., Di Paolo, C., Froment, J., Hidasi, A.O., Hollender, J., Hollert, H., Hu, M., Klob, A., Koprivica, S., Krauss, M., Muz, M., Oswald, P., Petre, M., Schollée, J.E., Seiler, T.B., Shao, Y., Slobodnik, J., Sonavane, M., Suter, M.J.F., Tollefsen, K.E., Tousova, Z., Walz, J.H., and Brack, W. (2017). Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Sci. Total Environ. 581–582: 350–358. doi: 10.1016/j.scitotenv.2016.12.140.

76 76 Hurtado-Sánchez, M.C., Romero-González, R., Rodríguez-Cáceres, M.I., Durán-Merás, I., and Garrido Frenich, A. (2013). Rapid and sensitive on-line solid phase extraction ultra-high-performance liquid chromatography-electrospray-tandem mass spectrometry analysis of pesticides in surface waters. J. Chromatogr. A 1305: 193–202. doi: 10.1016/j.chroma.2013.07.045.

77 77 Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., Cal, A., Boleda, M.R., Otero, N., Carrey, R., Solà, V., Queralt, E., Isla, E., Casanovas, A., Frances, G., and López de Alda, M. (2021). Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: the lower Llobregat River basin case study (Barcelona, Spain). Sci. Total Environ. 755: 142377. doi: 10.1016/j.scitotenv.2020.142377.

78 78 Barbieri, M.V., Monllor-Alcaraz, L.S., Postigo, C., and López de Alda, M. (2020). Improved fully automated method for the determination of medium to highly polar pesticides in surface and groundwater and application in two distinct agriculture-impacted areas. Sci. Total Environ. 745: 140650. doi: 10.1016/j.scitotenv.2020.140650.

79 79 Domínguez, I., Romero-González, R., Arrebola Liébanas, F.J., Martínez Vidal, J.L., and Garrido Frenich, A. (2016). Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends Environ. Anal. Chem. 12: 1–12. doi: 10.1016/j.teac.2016.09.001.

80 80 Abdel Ghani, S.B. and Hanafi, A.H. (2016). QuEChERS method combined with GC‒MS for pesticide residues determination in water. J. Anal. Chem. 71: 508–512. doi: 10.1134/S1061934816050117.

81 81 Garrido Frenich, A., Romero-González, R., Martínez Vidal, J.L., Martínez Ocaña, R., and Baquero Feria, P. (2011). Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry. Anal. Bioanal. Chem. 399: 2043–2059. doi: 10.1007/s00216-010-4236-0.

82 82 Menezes, H.C., Paulo, B.P., Paiva, M.J.N., and Cardeal, Z.L. (2016). A simple and quick method for the determination of pesticides in environmental water by HF-LPME-GC/MS. J. Anal. Methods Chem. 2016: 1–11. doi: 10.1155/2016/7058709.

83 83 Tankiewicz, M., Fenik, J., and Biziuk, M. (2011). Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86: 8–22. doi: 10.1016/j.talanta.2011.08.056.

84 84 Domínguez, I., Arrebola, F.J., Romero-González, R., Nieto-García, A., Martínez Vidal, J.L., and Garrido Frenich, A. (2017). Solid phase microextraction and gas chromatography coupled to magnetic sector high resolution mass spectrometry for the ultra-trace determination of contaminants in surface water. J. Chromatogr. A 1518: 15–24. doi: 10.1016/j.chroma.2017.08.061.

85 85 Domínguez, I., Arrebola, F.J., Gavara, R., Martínez Vidal, J.L., and Garrido Frenich, A. (2018). Automated and simultaneous determination of priority substances and polychlorinated biphenyls in wastewater using headspace solid phase microextraction and high resolution mass spectrometry. Anal. Chim. Acta 1002: 39–49. doi: 10.1016/j.aca.2017.11.056.

86 86 Jamshidi, F., Nouri, N., Sereshti, H., and Aliabadi, M.H.S. (2020). Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: application for extraction of pesticides. J. Mol. Liq. 318: 114073. doi: 10.1016/j.molliq.2020.114073.

87 87 Valenzuela, E.F., de Paula, F.G.F., Teixeira, A.P.C., Menezes, H.C., and Cardeal, Z.L. (2020). A new carbon nanomaterial solid-phase microextraction to pre-concentrate and extract pesticides in environmental water. Talanta 217: 121011. doi: 10.1016/j.talanta.2020.121011.

88 88 Zhao, P., Wang, Z., Li, K., Guo, X., and Zhao, L. (2018). Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 1568: 8–21. doi: 10.1016/j.chroma.2018.07.022.

89 89 Mechelke, J., Longrée, P., Singer, H., and Hollender, J. (2019). Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal. Bioanal. Chem. 2555–2567. doi: 10.1007/s00216-019-01696-3.

90 90 Kiefer, K., Bader, T., Minas, N., Salhi, E., Janssen, E.M.L., Von Gunten, U., and Hollender, J. (2020). Chlorothalonil transformation products in drinking water resources: widespread and challenging to abate. Water Res. 183: 116066. doi: 10.1016/j.watres.2020.116066.

91 91 Reemtsma, T., Alder, L., and Banasiak, U. (2013). A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J. Chromatogr. A 1271: 95–104. doi: 10.1016/j.chroma.2012.11.023.

92 92 Dagnac, T., Jeannot, R., Mouvet, C., and Baran, N. (2002). Determination of oxanilic and sulfonic acid metabolites of acetochlor in soils by liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A 957: 69–77. doi: 10.1016/S0021-9673(02)00310-2.

93 93 Colazzo, M., Pareja, L., Cesio, M.V., and Heinzen, H. (2018). Multi-residue method for trace pesticide analysis in soils by LC-QQQ-MS/MS and its application to real samples. Int. J. Environ. Anal. Chem. 98: 1292–1308. doi: 10.1080/03067319.2018.1551530.

94 94 Martínez Vidal, J.L., Padilla Sánchez, J.A., Plaza-Bolaños, P., Garrido Frenich, A., and Romero-González, R. (2010). Use of pressurized liquid extraction for the simultaneous analysis of 28 polar and 94 non-polar pesticides in agricultural soils by GC/QqQ-MS/MS and UPLC/QqQ-MS/MS. J. AOAC Int. 93: 1715–1731. doi: 10.1093/jaoac/93.6.1715.

95 95 Homazava, N., Gachet Aquillon, C., Vermeirssen, E., and Werner, I. (2014). Simultaneous multi-residue pesticide analysis in soil samples with ultra-high-performance liquid chromatography–tandem mass spectrometry using QuEChERS and pressurised liquid extraction methods. Int. J. Environ. Anal. Chem. 94: 1085–1099. doi: 10.1080/03067319.2014.954558.

96 96 Pérez-Mayán, L., Ramil, M., Cela, R., and Rodríguez, I. (2020). Multiresidue procedure to assess the occurrence and dissipation of fungicides and insecticides in vineyard soils from Northwest Spain. Chemosphere 261: 127696. doi: 10.1016/j.chemosphere.2020.127696.

97 97 Wu, X., Dong, F., Xu, J., Liu, X., Wu, X., and Zheng, Y. (2020). Enantioselective separation and dissipation of pydiflumetofen enantiomers in grape and soil by supercritical fluid chromatography–tandem mass spectrometry. J. Sep. Sci. 43: 2217–2227. doi: 10.1002/jssc.201901332.

98 98 Hou, X., Qiao, T., Zhao, Y., and Liu, D. (2019). Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field. Ecotoxicol. Environ. Saf. 180: 227–233. doi: 10.1016/j.ecoenv.2019.04.089.

99 99 Acosta-Dacal, A., Rial-Berriel, C., Díaz-Díaz, R., Bernal-Suárez, M.M., and Luzardo, O.P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ. 753: 142015. doi: 10.1016/j.scitotenv.2020.142015.

100 100 Chen, K., Li, S., Hu, M., Xu, J., Wu, X., Dong, F., Zheng, Y., and Liu, X. (2017). Dissipation dynamics of fenamidone and propamocarb hydrochloride in pepper, soil and residue analysis in vegetables by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Int. J. Environ. Anal. Chem. 97: 134–144. doi: 10.1080/03067319.2017.1291807.

101 101 Ismail, N.A.H., Wee, S.Y., and Aris, A.Z. (2017). Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 188: 375–388. doi: 10.1016/j.chemosphere.2017.08.150.

102 102 Egea Gonzalez, F.J., Mena Granero, A., Glass, C.R., Garrido Frenich, A., and Martinez Vidal, J.L. (2004). Screening method for pesticides in air by gas chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18: 537–543. doi: 10.1002/rcm.1359.

103 103 Van Ael, E., Covaci, A., Blust, R., and Bervoets, L. (2012). Persistent organic pollutants in the Scheldt estuary: environmental distribution and bioaccumulation. Environ. Int. 48: 17–27. doi: 10.1016/j.envint.2012.06.017.

104 104 Miyawaki, T., Tobiishi, K., Takenaka, S., and Kadokami, K. (2018). A rapid method, combining microwave-assisted extraction and gas chromatography-mass spectrometry with a database, for determining organochlorine pesticides and polycyclic aromatic hydrocarbons in soils and sediments. Soil Sediment Contam. 27: 31–45. doi: 10.1080/15320383.2017.1360245.

105 105 Zhao, X., Cui, T., Guo, R., Liu, Y., Wang, X., An, Y., Qiao, X., and Zheng, B. (2019). A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Anal. Chim. Acta 1047: 71–80. doi: 10.1016/j.aca.2018.10.011.

106 106 Mesquita, T.C.R., Santos, R.R., Cacique, A.P., De Sá, L.J., Silvério, F.O., and Pinho, G.P. (2018). Easy and fast extraction methods to determine organochlorine pesticides in sewage sludge, soil, and water samples based at low temperature. J. Environ. Sci. Heal. – Part B Pestic. Food Contam. Agric. Wastes. 53: 199–206. doi: 10.1080/03601234.2017.1405626.

107 107 Belmonte Vega, A., Garrido Frenich, A., and Martínez Vidal, J.L. (2005). Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Anal. Chim. Acta 538: 117–127. doi: 10.1016/j.aca.2005.02.003.

108 108 Knoll, S., Rösch, T., and Huhn, C. (2020). Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal. Bioanal. Chem. 412: 6149–6165. doi: 10.1007/s00216-020-02811-5.

109 109 Deng, H., Ji, Y., Tang, S., Yang, F., Tang, G., Shi, H., and Kee Lee, H. (2020). Application of chiral and achiral supercritical fluid chromatography in pesticide analysis: a review. J. Chromatogr. A 1634: 461684. doi: 10.1016/j.chroma.2020.461684.

110 110 Bieber, S., Greco, G., Grosse, S., and Letzel, T. (2017). RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal. Chem. 89: 7907–7914. doi: 10.1021/acs.analchem.7b00859.

111 111 Salvatierra-Stamp, V.D.C., Ceballos-Magaña, S.G., Gonzalez, J., Ibarra-Galván, V., and Muñiz-Valencia, R. (2015). Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal. Bioanal. Chem. 407: 4219–4226. doi: 10.1007/s00216-015-8581-x.

112 112 Geerdink, R.B., Hassing, M., Ayarza, N., Bruggink, C., Wielheesen, M., Claassen, J., and Epema, O.J. (2020). Analysis of glyphosate, AMPA, glufosinate and MPPA with ion chromatography tandem mass spectrometry using a membrane suppressor in the ammonium form application to surface water of low to moderate salinity. Anal. Chim. Acta 1133: 66–76. doi: 10.1016/j.aca.2020.05.058.

113 113 Gissawong, N., Mukdasai, S., Boonchiangma, S., Sansuk, S., and Srijaranai, S. (2020). A rapid and simple method for the removal of dyes and organophosphorus pesticides from water and soil samples using deep eutectic solvent embedded sponge. Chemosphere 260: 127590. doi: 10.1016/j.chemosphere.2020.127590.

114 114 Asensio-Ramos, M., Hernández-Borges, J., Ravelo-Pérez, L.M., Alfonso, M.M., Palenzuela, J.A., and Rodríguez-Delgado, M.A. (2012). Dispersive liquid-liquid microextraction of pesticides and metabolites from soils using 1,3-dipentylimidazolium hexafluorophosphate ionic liquid as an alternative extraction solvent. Electrophoresis 33: 1449–1457. doi: 10.1002/elps.201100522.

115 115 Ivdra, N., Herrero-Martín, S., and Fischer, A. (2014). Validation of user- and environmentally friendly extraction and clean-up methods for compound-specific stable carbon isotope analysis of organochlorine pesticides and their metabolites in soils. J. Chromatogr. A 1355: 36–45. doi: 10.1016/j.chroma.2014.06.014.

116 116 Domínguez, I., Arrebola, F.J., Martínez Vidal, J.L., and Garrido Frenich, A. (2020). Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J. Chromatogr. A 1619: 460964. doi: 10.1016/j.chroma.2020.460964.

117 117 Meng, D., Fan, D., Gu, W., Wang, Z., Chen, Y., Bu, H., and Liu, J. (2020). Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: a case study of Dianshan Lake, China. Chemosphere 243: 125367. doi: 10.1016/j.chemosphere.2019.125367.

Analytical Methods for Environmental Contaminants of Emerging Concern

Подняться наверх