Читать книгу Analytical Methods for Environmental Contaminants of Emerging Concern - Группа авторов - Страница 39

References

Оглавление

1 Roig, B. and D’Aco, V. (2016). Distribution of pharmaceutical residues in the environment. In: Pharmaceuticals in the Environment, 1st edn (ed., R.E. Hester and R.M. Harrison), 34–69. Cambridge: Royal Society of Chemistry. doi: 10.1039/9781782622345.

2 Kümmerer, K. (2008). Pharmaceuticals in the environment – a brief summary. In: Pharmaceuticals in the Environment Sources, Fate, Effects and Risks, 3rd edn (ed. K. Kümmerer), 3–21. Berlin Heidelberg: Springer. doi: 10.1007/978-3-662-09259-0.

3 Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environ. Sci. Technol. 35(17): 3397–3406. doi: 10.1021/es0003021.

4 Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodríguez, E., Fernández-Calviño, D., and Arias-Estévez, M. (2020). Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes 8(11): 1–40. doi: 10.3390/pr8111479.

5 5 Khan, N.A., Ahmed, S., Farooqi, I.H., Ali, I., Vambol, V., Changani, F., Yousefi, M., Vambol, S., Khan, S.U., and Khan, A.H. (2020). Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. Trends Anal. Chem. 129: 115921. doi: 10.1016/j.trac.2020.115921.

6 6 Wang, J., Chu, L., Wojnárovits, L., and Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ. 744: 140997. doi: 10.1016/j.scitotenv.2020.140997.

7 Gworek, B., Kijeńska, M., Zaborowska, M., Wrzosek, J., Tokarz, L., and Chmielewski, J. (2019). Pharmaceuticals in aquatic environment. Fate and behavior, ecotoxicology and risk assessment, a review. Acta Pol. Pharm. – Drug Res. 76(3): 397–407. doi: 10.32383/appdr/103368.

8 8 Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M., and Sharma, V.K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251: 126351. doi: 10.1016/j.chemosphere.2020.126351.

9 9 Carvalho, I.T. and Santos, L. (2016). Antibiotics in the aquatic environments: a review of the European scenario. Environ. Int. 94: 736–757. doi: 10.1016/j.envint.2016.06.025.

10 10 Kaczala, F. and Blum, E.S. (2015). The occurrence of veterinary pharmaceuticals in the environment: a review. Curr. Anal. Chem. 12(3): 169–182. doi: 10.2174/1573411012666151009193108.

11 11 Escher, B.I. and Fenner, K. (2011). Recent advances in environmental risk assessment of transformation products. Environ. Sci. Technol. 45(9): 3835–3847. doi: 10.1021/es1030799.

12 12 Evgenidou, E.N., Konstantinou, I.K., and Lambropoulou, D.A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci. Total Environ. 505: 905–926. doi: 10.1016/j.scitotenv.2014.10.021.

13 13 Celiz, M., Tso, J.D., and Aga, D.S. (2009). Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ. Toxicol. Chem. 28(12): 2473–2484. doi: 10.1897/09-173.1.

14 14 Yin, L., Wang, B., Yuan, H., Deng, S., Huang, J., Wang, Y., and Yu, G. (2017). Pay special attention to the transformation products of PPCPs in environment. Emerg. Contam. 3(2): 69–75. doi: 10.1016/j.emcon.2017.04.001.

15 15 Besse, J.P., Latour, J.F., and Garric, J. (2012). Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ. Int. 39(1): 73–86. doi: 10.1016/j.envint.2011.10.002.

16 16 Madikizela, L.M., Ncube, S., Tutu, H., Richards, H., Newman, B., Ndungu, K., and Chimuka, L. (2020). Pharmaceuticals and their metabolites in the marine environment: sources, analytical methods and occurrence. Trends Environ. Anal. Chem. 28: e00104. doi: 10.1016/j.teac.2020.e00104.

17 17 Godoi, F.C., Prakash, S., and Bhandari, B.R., (2019). Final report The database “Pharmaceuticals in the Environment” – update and new analysis. Germany: German Environmental Agency, Umwelt Bundesamt, p. 103. Report No.: 67/2019.

18 18 Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council.

19 19 Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Comm.

20 20 Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council.

21 21 European Medicines Agency (2006). Guideline on the Environmental Risk Assessment of Medical Products for Human Use. London: European Medicines Agency. Report No.: EMEA/CHMP/SWP/4447/00.

22 22 Guideline on the Environmental Risk Assessment for Veterinary Medicinal Products in Support of the VICH GL6 and GL 38. London: European Medicines Agency; 2008, 77 p. Report No.: EMEA/CVMP/ERA/418282/2005-Rev.1.

23 23 Ankley, G.T., Brooks, B.W., Huggett, D.B., and Sumpter, J.P. (2007). Repeating history: Pharmaceuticals in the environment. Environ. Sci. Technol. 15: 8211–8217. doi: 10.1021/es072658j.

24 24 Schmitt, H., Boucard, T., Garric, J., Jensen, J., Parrott, J., Péry, A., Rӧmbke, J., Straub, J.O., Hutchinson, T.H., Sanchez-Argüello, P., Wennmalm, A., and Duis, K. (2010). Recommendations on the environmental risk assessment of pharmaceuticals: Effect characterization. Integr. Environ. Assess. Manag. 6: 588–602. doi: 10.1897/IEAM_2009-053.1.

25 25 Tarazona, J.V., Escher, B.I., Giltrow, E., Sumpter, J., and Knacker, T. (2010). Targeting the environmental risk assessment of pharmaceuticals: Facts and fantasies. Integr. Environ. Assess. Manag. 6: 603–613. doi: 10.1897/IEAM_2009-052.1.

26 26 Męczykowska, H., Kobylis, P., Stepnowski, P., and Caban, M. (2017). Calibration of passive samplers for the monitoring of pharmaceuticals in water-sampling rate variation. Crit. Rev. Anal. Chem. 47(3): 204–222. doi: 10.1080/10408347.2016.1259063.

27 27 Martínez Bueno, M.J., Herrera, S., Munaron, D., Boillot, C., Fenet, H., Chiron, S., and Gómez, E. (2016). POCIS passive samplers as a monitoring tool for pharmaceutical residues and their transformation products in marine environment. Environ. Sci. Pollut. Res. 23(6): 5019–5029. doi: 10.1007/s11356-014-3796-5.

28 28 Rimayi, C., Chimuka, L., Gravell, A., Fones, G.R., and Mills, G.A. (2019). Use of the Chemcatcher® passive sampler and time-of-flight mass spectrometry to screen for emerging pollutants in rivers in Gauteng Province of South Africa. Environ. Monit. Assess. 191(6): 388. doi: 10.1007/s10661-019-7515-z.

29 29 Jakubus, A., Godlewska, K., Gromelski, M., Jagiello, K., Puzyn, T., Stepnowski, P., and Paszkiewicz, M. (2019). The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceutical and their metabolites: Effect of extraction condition. Microchem. J. 146: 1113–1125. doi: 10.1016/j.microc.2019.02.051.

30 30 Męczykowska, H., Kobylis, P., Stepnowski, P., and Caban, M. (2017). Ionic liquids for the passive sampling of sulfonamides from water – applicability and selectivity study. Anal. Bioanal. Chem. 409(16): 3951–3958. doi: 10.1007/s00216-017-0342-6.

31 31 Caban, M., Męczykowska, H., and Stepnowski, P. (2016). Application of the PASSIL technique for the passive sampling of exemplary polar contaminants (pharmaceuticals and phenolic derivatives) from water. Talanta 155: 185–192. doi: 10.1016/j.talanta.2016.04.035.

32 32 Godlewska, K., Stepnowski, P., and Paszkiewicz, M. (2021). Pollutant analysis using passive samplers: Principles, sorbents, calibration and applications. A review. Environ. Chem. Lett. 19: 465–520. doi: 10.1007/s10311-020-01079-6.

33 33 Białk-Bielińska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K., and Stepnowski, P. (2016). Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm. Biomed. Anal. 121: 271–296. doi: 10.1016/j.jpba.2016.01.016.

34 34 Stolker, A.A.M. and Brinkman, U.A.T. (2005). Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals – A review. J. Chromatogr. A 1067(1–2): 15–53. doi: 10.1016/j.chroma.2005.02.037.

35 35 Pavlović, D.M., Babić, S., Horvat, A.J.M., and Kaštelan-Macan, M. (2007). Sample preparation in analysis of pharmaceuticals. Trends Anal. Chem. 26(11): 1062–1075. doi: 10.1016/j.trac.2007.09.010.

36 36 Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8(1): 1–13. doi: 10.1016/j.ecolind.2007.06.002.

37 37 Buchberger, W. (2011). Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J. Chromatogr. A 1218(4): 603–618. doi: 10.1016/j.chroma.2010.10.040.

38 38 Tadeo, J.L., Sánchez-Brunete, C., Albero, B., García-Valcárcel, A.I., and Pérez, R.A. (2012). Analysis of emerging organic contaminants in environmental solid samples. Cent. Eur. J. Chem. 10(3): 480–520. doi: 10.2478/s11532-011-0157-9.

39 39 Babić, S. and Mutavdžić Pavlović, D. (2013). Analysis of PhACs in solid environmental samples (soil, sediment, and sludge). Compr. Anal. Chem. 62: 129–167. doi: 10.1016/B978-0-444-62657-8.00005-7.

40 40 Havens, S.M., Hedman, C.J., Hemming, J.D.C., Mieritz, M.G., Shafer, M.M., and Schauer, J.J. (2014). Comparison of accelerated solvent extraction, soxhlet and sonication techniques for the extraction of estrogens, androgens and progestogens from soils. J. Agric. Chem. Environ. 03(03): 103–120. doi: 10.4236/jacen.2014.33013.

41 41 Liang, X., Chen, B., Nie, X., Shi, Z., Huang, X., and Li, X. (2013). The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 92(11): 1410–1416. doi: 10.1016/j.chemosphere.2013.03.044.

42 42 Chen, H., Liu, S., Xu, X.R., Liu, S.S., Zhou, G.J., and Sun, K.F. (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 90(1–2): 181–187. doi: 10.1016/j.marpolbul.2014.10.053.

43 43 Na, G., Fang, X., Cai, Y., Ge, L., Zong, H., Yuan, X., Yao, Z., and Zhang, Z. (2013). Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar. Pollut. Bull. 69(1–2): 233–237. doi: 10.1016/j.marpolbul.2012.12.028.

44 44 Capone, D.G., Weston, D.P., Miller, V., and Shoemaker, C. (1996). Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145(1–4): 55–75. doi: 10.1016/S0044-8486(96)01330-0.

45 45 Stewart, M., Olsen, G., Hickey, C.W., Ferreira, B., Jelić, A., Petrović, M., and Barcelo, D. (2014). A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Sci. Total Environ. 468–469: 202–210. doi: 10.1016/j.scitotenv.2013.08.039.

46 46 Choi, M., Furlong, E.T., Werner, S.L., Pait, A.S., Lee, I.S., and Choi, H.G. (2014). Cimetidine, acetaminophen, and 1,7-dimethylxanthine, as indicators of wastewater pollution in marine sediments from Masan Bay, Korea. Ocean Sci. J. 49(3): 231–240. doi: 10.1007/s12601-014-0023-8.

47 47 Norambuena, L., Gras, N., and Contreras, S. (2013). Development and validation of a method for the simultaneous extraction and separate measurement of oxytetracycline, florfenicol, oxolinic acid and flumequine from marine sediments. Mar. Pollut. Bull. 73(1): 154–160. doi: 10.1016/j.marpolbul.2013.05.027.

48 48 Aznar, R., Sánchez-Brunete, C., Albero, B., Rodríguez, J.A., and Tadeo, J.L. (2014). Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields. Environ. Sci. Pollut. Res. 21(6): 4772–4782. doi: 10.1007/s11356-013-2438-7.

49 49 Kumirska, J., Migowska, N., Caban, M., Łukaszewicz, P., and Stepnowski, P. (2015). Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci. Total Environ. 508: 498–505. doi: 10.1016/j.scitotenv.2014.12.020.

50 50 Mijangos, L., Ziarrusta, H., Prieto, A., Zugazua, O., Zuloaga, O., Olivares, M., Usobiaga, A., Paschke, A., and Etxebarria, N. (2018). Evaluation of polar organic chemical integrative and hollow fibre samplers for the determination of a wide variety of organic polar compounds in seawater. Talanta 185: 469–476. doi: 10.1016/j.talanta.2018.03.103.

51 51 Wille, K., De Brabander, H.F., Vanhaecke, L., De Wulf, E., Van Caeter, P., and Janssen, C.R. (2012). Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. Trends Analyt. Chem. 35: 87–108. doi: 10.1016/j.trac.2011.12.003.

52 52 Pazdro, K., Borecka, M., Siedlewicz, G., Białk-Bielińska, A., and Stepnowski, P. (2015). Analysis of the residues of pharmaceuticals in marine environment: State-of-the-art, analytical problems and challenges. Curr. Anal. Chem. 12(3): 202–226. doi: 10.2174/1573411012666151009193536.

53 53 Wang, C., Shi, H., Adams, C.D., Gamagedara, S., Stayton, I., and Timmons, T. (2011). Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res. 45(4): 1818–1828. doi: 10.1016/j.watres.2010.11.043.

54 54 Ferrer, I., Zweigenbaum, J.A., and Thurman, E.M. (2010). Analysis of 70 environmental protection agency priority pharmaceuticals in water by EPA method 1694. J. Chromatogr. A 1217(36): 5674–5686. doi: 10.1016/j.chroma.2010.07.002.

55 55 Sacher, F., Lange, F.T., Brauch, H.J., and Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J. Chromatogr. A 938(1–2): 199–210. doi: 10.1016/S0021-9673(0101266-3).

56 56 Borecka, M., Białk-Bielińska, A., Siedlewicz, G., Kornowska, K., Kumirska, J., Stepnowski, P., and Pazdro, K. (2013). A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. J. Chromatogr. A 1304: 138–146. doi: 10.1016/j.chroma.2013.07.018.

57 57 Borecka, M., Siedlewicz, G., Haliński, Ł.P., Sikora, K., Pazdro, K., Stepnowski, P., and Białk-Bielińska, A. (2015). Contamination of the southern Baltic Sea waters by the residues of selected pharmaceuticals: Method development and field studies. Mar. Pollut. Bull. 94(1–2): 62–71. doi: 10.1016/j.marpolbul.2015.03.008.

58 58 Caban, M., Lis, H., Kumirska, J., and Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 538: 402–411. doi: 10.1016/j.scitotenv.2015.08.076.

59 59 Noppe, H., De Wasch, K., Poelmans, S., Van Hoof, N., Verslycke, T., and Janssen, C.R. (2005). Development and validation of an analytical method for detection of estrogens in water. Anal. Bioanal. Chem. 382(1): 91–98. doi: 10.1007/s00216-005-3174-8.

60 60 Godlewska, K., Stepnowski, P., and Paszkiewicz, M. (2020). Application of the polar organic chemical integrative sampler for isolation of environmental micropollutants – A review. Crit. Rev. Anal. Chem. 50(1): 1–28. doi: 10.1080/10408347.2019.1565983.

61 61 Herrera-Herrera, A.V., Hernández-Borges, J., Afonso, M.M., Palenzuela, J.A., and Rodríguez-Delgado, M.Á. (2013). Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples. Talanta 116: 695–703. doi: 10.1016/j.talanta.2013.07.060.

62 62 Li, J., Ren, X., Diao, Y., Chen, Y., Wang, Q., and Jin, W. (2018). Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 257: 259–264. doi: 10.1016/j.foodchem.2018.02.144.

63 63 Jakubus, A., Gromelski, M., Jagiello, K., Puzyn, T., Stepnowski, P., and Paszkiewicz, M. (2019). Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchem. J. 146: 258–269. doi: 10.1016/j.microc.2018.12.063.

64 64 Tsai, W.H., Huang, T.C., Huang, J.J., Hsue, Y.H., and Chuang, H.Y. (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A 1216(12): 2263–2269. doi: 10.1016/j.chroma.2009.01.034.

65 65 Vera-Candioti, L., Gil García, M.D., Martínez Galera, M., and Goicoechea, H.C. (2008). Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography-diode array detection. J. Chromatogr. A 1211(1–2): 22–32. doi: 10.1016/j.chroma.2008.09.093.

66 66 Bratkowska, D., Fontanals, N., Cormack, P.A.G., Borrull, F., and Marcé, R.M. (2012). Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples. J. Chromatogr. A 1225: 1–7. doi: 10.1016/j.chroma.2011.12.064.

67 67 Assis, R.C., Mageste, A.B., de Lemos, L.R., Orlando, R.M., and Rodrigues, G.D. (2020). Application of aqueous two-phase systems for the extraction of pharmaceutical compounds from water samples. J. Mol. Liq. 301: 112411. doi: 10.1016/j.molliq.2019.112411.

68 68 Sadkowska, J., Caban, M., Chmielewski, M., Stepnowski, P., and Kumirska, J. (2019). The use of gas chromatography for determining pharmaceutical residues in clinical, cosmetic, food and environmental samples in the light of the requirements of sustainable development. Arch. Environ. Prot. 45(1): 42–49. doi: 10.24425/aep.2019.124829.

69 69 Caban, M., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2012). Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. J. Chromatogr. A 1258: 117–127. doi: 10.1016/j.chroma.2012.08.029.

70 70 Caban, M., Czerwicka, M., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2013). A new silylation reagent dimethyl(3,3,3-trifluoropropyl)silyldiethylamine for the analysis of estrogenic compounds by gas chromatography-mass spectrometry. J. Chromatogr. A 1301: 215–224. doi: 10.1016/j.chroma.2013.05.073.

71 71 Evershed, R. (1993). Advances in silylation. In: Handbook of Derivatives for Chromatography, 2nd (ed. K. Blau and J.M. Halket), 51–108. London: Wiley.

72 72 Kumirska, J., Plenis, A., Łukaszewicz, P., Caban, M., Migowska, N., Białk-Bielińska, A., Czerwicka, M., and Stepnowski, P. (2013). Chemometric optimization of derivatization reactions prior to gas chromatography – mass spectrometry analysis. J. Chromatogr. A 1296: 164–178. doi: 10.1016/j.chroma.2013.04.079.

73 73 Caban, M., Stepnowski, P., Kwiatkowski, M., Migowska, N., and Kumirska, J. (2011). Determination of β-blockers and β-agonists using gas chromatography and gas chromatography – mass spectrometry – a comparative study of the derivatization step. J. Chromatogr. A 1218(44): 8110–8122. doi: 10.1016/j.chroma.2011.08.093.

74 74 Caban, M., Mioduszewska, K., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2014). A new silylating reagent – dimethyl(3,3,3-trifluoropropyl)silyldiethylamine – for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry analysis. J. Chromatogr. A 1346: 107–116. doi: 10.1016/j.chroma.2014.04.054.

75 75 Migowska, N., Stepnowski, P., Paszkiewicz, M., Gołębiowski, M., and Kumirska, J. (2010). Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) by gas chromatography methods. Anal. Bioanal. Chem. 397(7): 3029–3034. doi: 10.1007/s00216-010-3853-y.

76 76 Caban, M. and Stepnowski, P. (2018). Silylation of acetaminophen by trifluoroacetamide-based silylation agents. J. Pharm. Biomed. Anal. 154: 433–437. doi: 10.1016/j.jpba.2018.03.037.

77 77 Caban, M. and Stepnowski, P. (2020). The application of isotopically labeled analogues for the determination of small organic compounds by GC/MS with selected ion monitoring. Anal. Methods 12(30): 3854–3864. doi: 10.1039/D0AY00723D.

78 78 Evans, S.E. and Kasprzyk-Hordern, B. (2014). Applications of chiral chromatography coupled with mass spectrometry in the analysis of chiral pharmaceuticals in the environment. Trends Environ. Anal. Chem. 1: 34–51. doi: 10.1016/j.teac.2013.11.005.

79 79 Guitart, C. and Readman, J.W. (2010). Critical evaluation of the determination of pharmaceuticals, personal care products, phenolic endocrine disrupters and faecal steroids by GC/MS and PTV-GC/MS in environmental waters. Anal. Chim. Acta 658(1): 32–40. doi: 10.1016/j.aca.2009.10.066.

80 80 Huang, S., Zhu, F., Jiang, R., Zhou, S., Zhu, D., Liu, H., and Ouyang, G. (2015). Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry. Talanta 136: 198–203. doi: 10.1016/j.talanta.2014.11.071.

81 81 Aspromonte, J., Wolfs, K., and Adams, E. (2019). Current application and potential use of GC × GC in the pharmaceutical and biomedical field. J. Pharm. Biomed. Anal. 176: 112817. doi: 10.1016/j.jpba.2019.112817.

82 82 Caban, M., Białk-Bielińska, A., Stepnowski, P., and Kumirska, J. (2016). Current issues in pharmaceutical residues in drinking water. Curr. Anal. Chem. 12(3): 1–9. doi: 10.2174/1573411012666151009194401.

83 83 Świacka, K., Szaniawska, A., and Caban, M. (2019). Evaluation of bioconcentration and metabolism of diclofenac in mussels Mytilus trossulus – laboratory study. Mar. Pollut. Bull. 141: 249–255. doi: 10.1016/j.marpolbul.2019.02.050.

84 84 Rosal, R., Rodríguez, A., Perdigón-Melón, J.A., Petre, A., García-Calvo, E., Gómez, M.J., Agüera, A., and Fernández-Alba, A.R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 44(2): 578–588. doi: 10.1016/j.watres.2009.07.004.

85 85 Boyd, G.R., Palmeri, J.M., Zhang, S., and Grimm, D.A. (2004). Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Sci. Total Environ. 333: 137–148. doi: 10.1016/j.scitotenv.2004.03.018.

86 86 Kołecka, K., Gajewska, M., Stepnowski, P., and Caban, M. (2019). Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Sci. Total Environ. 647: 149–157. doi: 10.1016/j.scitotenv.2018.07.439.

87 87 Tran, N.H., Chen, H., Do, T.V., Reinhard, M., Ngo, H.H., He, Y., and Yew-Hoong Gin, K. (2016). Simultaneous analysis of multiple classes of antimicrobials in environmental water samples using SPE coupled with UHPLC-ESI-MS/MS and isotope dilution. Talanta 159: 163–173. doi: 10.1016/j.talanta.2016.06.006.

88 88 Rashid, A., Mazhar, S.H., Zeng, Q., Kiki, C., Yu, C., and Sun, Q. (2020). Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. J. Chromatogr. B 1145: 122103. doi: 10.1016/j.jchromb.2020.122103.

89 89 Fauzan, T., Omar, T., Zaharin, A., Yuso, F., and Mustafa, S. (2017). An improved SPE-LC-MS/MS method for multiclass endocrine disrupting compound determination in tropical estuarine sediments. Talanta 173: 51–59. doi: 10.1016/j.talanta.2017.05.064.

90 90 Hemström, P. and Irgum, K. (2006). Hydrophilic interaction chromatography. J. Sep. Sci. 29: 1784–1821. doi: 10.1002/jssc.200600199.

91 91 Montes, R., Aguirre, J., Vidal, X., Rodil, R., Cela, R., and Quintana, J.B. (2017). Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry. Environ. Sci. Technol. 51(11): 6250–6259. doi: 10.1021/acs.est.6b05135.

92 92 Miossec, C., Mille, T., Lanceleur, L., and Monperrus, M. (2020). Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem. 322: 126765. doi: 10.1016/j.foodchem.2020.126765.

93 93 Afsa, S., Hamden, K., Martin, P.A.L., and Mansour, H.B. (2020). Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environ. Sci. Pollut. Res. Int. 27(2): 1941–1955. doi: 10.1007/s11356-019-06866-5.

94 94 Liang, Y., Liu, J., Zhong, Q., Yu, D., Yao, J., Huang, T., Zhu, M., and Zhou, T. (2019). A fully automatic cross used solid-phase extraction online coupled with ultra-high performance liquid chromatography–tandem mass spectrometry system for the trace analysis of multi-class pharmaceuticals in water samples. J. Pharm. Biomed. Anal. 174: 330–339. doi: 10.1016/j.jpba.2019.06.004.

95 95 Tahrani, L., Loco, J.V., Anthonissen, R., Verschaeve, L., Mansour, H.B., and Reyns, T. (2017). Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Sci. Technol. 76(11–12): 3000–3021. doi: 10.2166/wst.2017.465.

96 96 Errayess, S.A., Lahcen, A.A., Idrissi, L., Marcoaldi, C., Chiavarini, S., and Amine, A. (2017). A sensitive method for the determination of Sulfonamides in seawater samples by solid phase extraction and UV–visible spectrophotometry. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 181: 276–285. doi: 10.1016/j.saa.2017.03.061.

97 97 Ngubane, N.P., Naicker, D., Ncube, S., Chimuka, L., and Madikizela, L.M. (2019). Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: A case of northern Durban in KwaZulu–Natal Province of South Africa. Reg. Stud. Mar. Sci. 29: 100675. doi: 10.1016/j.rsma.2019.100675.

98 98 Omotola, E.O. and Olatunji, O.S. (2020). Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon 6(12): e05787. doi: 10.1016/j.heliyon.2020.e05787.

99 99 Gago-Ferrero, P., Bletsou, A.A., Damalas, D.E., Aalizadeh, R., Alygizakis, N.A., Singer, H.P., Hollender, J., and Thomaidis, N.S. (2020). Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 387: 121712. doi: 10.1016/j.jhazmat.2019.121712.

100 100 Mhuka, V., Dube, S., and Nindi, M.M. (2020). Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 6: 250–258. doi: 10.1016/j.emcon.2020.07.002.

101 101 Louw, S., Njoroge, M., Chigorimbo-Murefu, N., and Chibale, K. (2012). Comparison of electrospray ionisation, atmospheric pressure chemical ionisation and atmospheric pressure photoionisation for the identification of metabolites from labile artemisinin-based anti-malarial drugs using a QTRAP® mass spectrometer. Rapid Commun. Mass Spectrom. 26(20): 2431–2442. doi: 10.1002/rcm.6359.

102 102 Wu, X., Conkle, J.L., and Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. J. Chromatogr. A 1254: 78–86. doi: 10.1016/j.chroma.2012.07.041.

103 103 Kiszkiel-Taudul, I. (2021). Determination of antihistaminic pharmaceuticals in surface water samples by SPE-LC-MS/MS method. Microchem. J. 162: 105874. doi: 10.1016/j.microc.2020.105874.

104 104 Duan, Y.P., Dai, C.M., Zhang, Y.L., and Chen, L. (2013). Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal. Chim. Acta 758: 93–100. doi: 10.1016/j.aca.2012.11.010.

105 105 Ebele, A.J., Abdallah, M.A.E., and Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3(1): 1–16. doi: 10.1016/j.emcon.2016.12.004.

106 106 Maranata, G.J., Surya, N.O., and Hasanah, A.N. (2021). Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon 7(1): e05934. doi: 10.1016/j.heliyon.2021.e05934.

107 107 Gosetti, F., Mazzucco, E., Gennaro, M.C., and Marengo, E. (2016). Contaminants in water: Non-target UHPLC/MS analysis. Environ. Chem. Lett. 14(1): 51–65. doi: 10.1016/S0045-6535(02)00769-5.

108 108 Martínez-Piernas, A.B., Plaza-Bolaños, P., García-Gómez, E., Fernández-Ibáñez, P., and Agüera, A. (2018). Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches. Anal. Chim. Acta 1030: 115–124. doi: 10.1016/j.aca.2018.05.049.

109 109 Le-Minh, N., Stuetz, R.M., and Khan, S.J. (2012). Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry. Talanta 89: 407–416. doi: 10.1016/j.talanta.2011.12.053.

110 110 Hug, C., Ulrich, N., Schulze, T., Brack, W., and Krauss, M. (2014). Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ. Pollut. 184: 25–32. doi: 10.1016/j.envpol.2013.07.048.

111 111 Zhou, W., Yang, S., and Wang, P.G. (2017). Matrix effects and application of matrix effect factor. Bioanalysis 9(23): 1839–1844. doi: 10.4155/bio-2017-0214.

112 112 Ho, Y.B., Zakaria, M.P., Latif, P.A., and Saari, N. (2014). Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci. Total Environ. 488–489(1): 261–267. doi: 10.1016/j.scitotenv.2014.04.109.

113 113 Wu, X.L., Xiang, L., Yan, Q.Y., Jiang, Y.N., Li, Y.W., Huang, X.P., Li, H., Cai, Q.Y., and Mo, C.H. (2014). Huang, Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Sci. Total Environ. 487(1): 399–406. doi: 10.1016/j.scitotenv.2014.04.015.

114 114 Choi, J.H., Lamshöft, M., Zühlke, S., Abd El-Aty, A.M., Rahman, M.M., Kim, S.W., Shim, J.H., and Spiteller, M. (2014). Analyses and decreasing patterns of veterinary antianxiety medications in soils. J. Hazard. Mater. 275: 154–165. doi: 10.1016/j.jhazmat.2014.05.005.

115 115 Dodgen, L.K., Li, J., Wu, X., Lu, Z., and Gan, J.J. (2014). Transformation and removal pathways of four common PPCP/EDCs in soil. Environ. Pollut. 193: 29–36. doi: 10.1016/j.envpol.2014.06.002.

116 116 Mijangos, L., Bizkarguenaga, E., Prieto, A., Fernández, L.A., and Zuloaga, O. (2015). Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy. J. Chromatogr. A 1389: 8–1318. doi: 10.1016/j.chroma.2015.02.036.

117 117 Hou, J., Wan, W., Mao, D., Wang, C., Mu, Q., Qin, S., and Luo, Y. (2015). Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environ. Sci. Pollut. Res. 22(6): 4545–4554. doi: 10.1007/s11356-014-3632-y.

118 118 Sharma, M.T., Krishna, M., and Mudiam, R. (2020). Estimation of measurement uncertainty for the quantitative analysis of pharmaceutical residues in river water using solid-phase extraction coupled with injector port silylation-gas chromatography-tandem mass spectrometry. Microchem. J. 159: 105560. doi: 10.1016/j.microc.2020.105560.

119 119 Kumirska, J., Łukaszewicz, P., Caban, M., Migowska, N., Plenis, A., Białk-Bielińska, A., Czewicka, M., Qi, F., and Stepnowski, P. (2019). Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection. Chemosphere 232: 232–242. doi: 10.1016/j.chemosphere.2019.05.164.

120 120 Nyi, N., Fong, S., Li, Y., and Kee, H. (2015). Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography – mass spectrometry for the determination of acidic pharmaceuticals in water. J. Chromatogr. A 1426: 69–76. doi: 10.1016/j.chroma.2015.11.070.

121 121 Kopperi, M., Ruiz-Jiménez, J., Hukkinen, J.I., and Riekkola, M.L. (2013). New way to quantify multiple steroidal compounds in wastewater by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal. Chim. Acta 761: 217–226. doi: 10.1016/j.aca.2012.11.059.

Analytical Methods for Environmental Contaminants of Emerging Concern

Подняться наверх