Читать книгу Biodiesel Production - Группа авторов - Страница 28
References
Оглавление1 1 Stephen, J.L. and Periyasamy, B. (2018). Innovative developments in biofuels production from organic waste materials: a review. Fuel 214: 623–633.
2 2 Nayak, A., Pulidindi, I.N., and Rao, C.S. (2020). Novel strategies for glucose production from biomass using heteropoly acid catalyst. Renew. Energy 159: 215–220.
3 3 Sovtić, N., Predrag, K.S., Bera, O.J. et al. (2020). A review of environmentally friendly rubber production using different vegetable oils. Polym. Eng. Sci. 60 (60): 1097–1117.
4 4 Wang, A., Sudarsanam, P., Xu, Y. et al. (2020). Functionalized magnetic nanosized materials for efficient biodiesel synthesis: via acid‐base/enzyme catalysis. Green Chem. 22 (10): 2977–3012.
5 5 Demirbas, A., Ak, N., Aslan, A., and Sen, N. (2018). Calculation of higher heating values of hydrocarbon compounds and fatty acids. Pet. Sci. Technol. 36 (11): 712–717.
6 6 Thushari, I., Babel, S., and Samart, C. (2018). Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renew. Energy 134: 125–134.
7 7 Mahmudul, H.M., Hagos, F.Y., Mamat, R. et al. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – a review. Renew. Sustain. Energy Rev. 72: 497–509.
8 8 Singh, D., Sharma, D., Soni, S.L. et al. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J. Clean. Prod. 307: 127299.
9 9 Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A. et al. (2017). A review of biomass‐derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev. 70: 1040–1051.
10 10 Lin, L., Cunshan, Z., Vittayapadung, S. et al. (2011). Opportunities and challenges for biodiesel fuel. Appl. Energy 88 (4): 1020–1031.
11 11 Ellabban, O., Abu‐Rub, H., and Blaabjerg, F. (2014). Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39: 748–764.
12 12 Boonyuen, S., Smith, S.M., Malaithong, M. et al. (2018). Biodiesel production by a renewable catalyst from calcined Turbo jourdani (Gastropoda: Turbinidae) shells. J. Clean. Prod. 177: 925–939.
13 13 Knothe, G. and Razon, L.F. (2017). Biodiesel fuels. Prog. Energy Combust. Sci. 58: 36–59.
14 14 Takase, M., Zhao, T., Zhang, M. et al. (2015). An expatiate review of neem, jatropha, rubber and karanja as multipurpose non‐edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew. Sustain. Energy Rev. 43: 495–520.
15 15 Gebremariam, S.N. and Marchetti, J.M. (2018). Economics of biodiesel production: review. Energy Convers. Manag. 168: 74–84.
16 16 Chua, S.Y., Periasamy, L.A., Goh, C.M.H. et al. (2020). Biodiesel synthesis using natural solid catalyst derived from biomass waste – a review. J. Ind. Eng. Chem. 81: 41–60.
17 17 Zhang, H., Li, H., Hu, Y. et al. (2019). Advances in production of bio‐based ester fuels with heterogeneous bifunctional catalysts. Renew. Sustain. Energy Rev. 114: 109296.
18 18 Konwar, L.J., Boro, J., and Deka, D. (2014). Review on latest developments in biodiesel production using carbon‐based catalysts. Renew. Sustain. Energy Rev. 29: 546–564.
19 19 Yaşar, F. (2020). Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 264: 116817.
20 20 Dhawane, S.H., Kumar, T., and Halder, G. (2018). Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers. Manag. 167: 176–202.
21 21 D’Souza, R., Vats, T., Chattree, A., and Siril, P.F. (2018). Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy 126: 1064–1073.
22 22 Kataria, J., Mohapatra, S.K., and Kundu, K. (2019). Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. J. Energy Inst. 92 (2): 275–287.
23 23 Joshi, G., Rawat, D.S., Lamba, B.Y. et al. (2015). Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Convers. Manag. 96: 258–267.
24 24 Adepoju, T.F., Ibeh, M.A., and Asuquo, A.J. (2021). Elucidate three novel catalysts synthesized from animal bones for the production of biodiesel from ternary non‐edible and edible oil blend: a case of Jatropha curcus, Hevea brasiliensis, and Elaeis guineensis oil. S. Afr. J. Chem. Eng. 36: 58–73.
25 25 Mansir, N., Teo, S.H., Rashid, U. et al. (2018). Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew. Sustain. Energy Rev. 82: 3645–3655.
26 26 Eze, V.C., Phan, A.N., and Harvey, A.P. (2018). Intensified one‐step biodiesel production from high water and free fatty acid waste cooking oils. Fuel 220: 567–574.
27 27 Mohamed, M.M., Bayoumy, W.A., El‐Faramawy, H. et al. (2020). A novel α‐Fe2O3/AlOOH(γ‐Al2O3) nanocatalyst for efficient biodiesel production from waste oil: kinetic and thermal studies. Renew. Energy 160: 450–464.
28 28 Shahraki, H., Entezari, M.H., and Goharshadi, E.K. (2015). Sono‐synthesis of biodiesel from soybean oil by KF/γ‐Al2O3 as a nano‐solid‐base catalyst. Ultrason. Sonochem. 23: 266–274.
29 29 Mazumdar, P., Borugadda, V.B., Goud, V.V., and Sahoo, L. (2012). Physico‐chemical characteristics of Jatropha curcas L. of North East India for exploration of biodiesel. Biomass Bioenergy 46: 546–554.
30 30 Abomohra, A.E.F., Elsayed, M., Esakkimuthu, S. et al. (2020). Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 81: 100868.
31 31 Maroa, S. and Inambao, F. (2020). Biodiesel, Combustion, Performance and Emissions Characteristics. Springer Publishers.
32 32 Tabatabaei, M. and Aghbashlo, M. (2019). Biodiesel. From Production to Combustion, 239. Springer Publishers.
33 33 Farid, M.A.A., Roslan, A.M., Hassan, M.A. et al. (2020). Net energy and techno‐economic assessment of biodiesel production from waste cooking oil using a semi‐industrial plant: a Malaysia perspective. Sustain. Energy Technol. Assess. 39: 100700.
34 34 Lani, N.S., Ngadi, N., Yahya, N.Y., and Rahman, R.A. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J. Clean. Prod. 146: 116–124.
35 35 Talebian‐Kiakalaieh, A., Amin, N.A.S., and Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104: 683–710.
36 36 Long, Y.D., Fang, Z., Su, T.C., and Yang, Q. (2014). Co‐production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Appl. Energy 113: 1819–1825.
37 37 Martínez, S.L., Romero, R., Natividad, R., and González, J. (2014). Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol. Catal. Today 220–222: 12–20.
38 38 Tamjidi, S., Esmaeili, H., and Moghadas, B.K. (2021). Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: a review study. J. Clean. Prod. 305: 127200.
39 39 Shan, R., Lu, L., Shi, Y. et al. (2018). Catalysts from renewable resources for biodiesel production. Energy Convers. Manag. 178: 277–289.
40 40 Pinto, B.F., Garcia, M.A.S., Costa, J.C.S. et al. (2019). Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: screening of substrates for biodiesel production. Fuel 239: 290–296.
41 41 Murray, R., King, G., and Wyse‐Mason, R. (2019). Micro‐emulsification vs. transesterification: an investigation of the efficacy of methanol use in improving vegetable oil engine performance. Biofuels https://doi.org/10.1080/17597269.2019.1598316.
42 42 Marwaha, A., Rosha, P., Mohapatra, S.K. et al. (2018). Waste materials as potential catalysts for biodiesel production: current state and future scope. Fuel Process. Technol. 181: 175–186.
43 43 Rashid, U., Anwar, F., Yunus, R., and Al‐Muhtaseb, A.H. (2015). Transesterification for biodiesel production using thespesia populnea seed oil: an optimization study. Int. J. Green Energy 12: 479–484.
44 44 Thiyagarajan, S., Sonthalia, A., Edwin Geo, V. et al. (2020). Effect of manifold injection of methanol/n‐pentanol in safflower biodiesel fuelled CI engine. Fuel 261: 116378.
45 45 Lertpanyapornchai, B. and Ngamcharussrivichai, C. (2015). Mesostructured Sr and Ti mixed oxides as heterogeneous base catalysts for transesterification of palm kernel oil with methanol. Chem. Eng. J. 264: 789–796.
46 46 Rashid, U., Anwar, F., Ashraf, M. et al. (2011). Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: biodiesel production. Energy Convers. Manag. 52 (8–9): 3034–3042.
47 47 Rashid, U., Ibrahim, M., Yasin, S. et al. (2013). Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non‐food feedstock. Ind. Crop. Prod. 45: 355–359.
48 48 Buasri, A., Lukkanasiri, M., Nernrimnong, R. et al. (2016). Rapid transesterification of Jatropha curcas oil to biodiesel using novel catalyst with a microwave heating system. Korean J. Chem. Eng. 33: 3388–3400.
49 49 Koutsouki, A.A., Tegou, E., Kontakos, S. et al. (2015). In situ transesterification of Cynara cardunculus L. seed oil via direct ultrasonication for the production of biodiesel. Fuel Process. Technol. 134: 122–129.
50 50 Anwar, F., Rashid, U., Ashraf, M., and Nadeem, M. (2010). Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl. Energy 87 (3): 779–785.
51 51 Rashid, U., Ibrahim, M., Ali, S. et al. (2012). Comparative study of the methanolysis and ethanolysis of maize oils using alkaline catalysts. Grasas Aceites 63 (1): 35–43.
52 52 Barminas, J.T., Maina, H.M., Tahir, S. et al. (2001). A preliminary investigation into the biofuel characteristics of tigernut (Cyperus esculentus). Bioresource Technology 79 (1): 87–89.
53 53 Sbihi, H.M., Nehdi, I.A., Blidi, L.E. et al. (2015). Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: a comparative study with base catalyzed biodiesel production. Ind. Crop. Prod. 76: 1049–1054.
54 54 Rashid, U., Knothe, G., Yunus, R., and Evangelista, R.L. (2014). Kapok oil methyl esters. Biomass Bioenerg. 66: 419–425.
55 55 Sharma, S., Saxena, V., Baranwal, A. et al. (2018). Engineered nanoporous materials mediated heterogeneous catalysts and their implications in biodiesel production. Mater. Sci. Energ. Technol. 1 (1): 11–21.
56 56 Mokbli, S., Nehdi, I.A., Sbihi, H.M. et al. (2018). Yucca aloifolia seed oil: a new source of bioactive compounds. Waste Biomass Valori. 9 (7): 1087–1093.
57 57 Syam, A.M., Rashid, U., Yunus, R. et al. (2016). Conversion of Oleum papaveris seminis oil into methyl esters via esterification process: optimization and kinetic study. Grasas Aceites 67 (1): e115.
58 58 Karmakar, B., Samanta, S., and Halder, G. (2020). Delonix regia heterogeneous catalyzed two‐step biodiesel production from Pongamia pinnata oil using methanol and 2‐propanol. J. Clean. Prod. 255: 120313.
59 59 Angin, D. and Şensöz, S. (2014). Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Int. J. Phytoremed. 16 (7–8): 684–693.
60 60 Kumar, S. and Dinesha, P. (2019). Use of alternative fuels in compression ignition engines: a review. Biofuels 10 (4): 525–535.
61 61 Lokman, I.M., Rashid, U., and Taufiq‐Yap, Y.H. (2016). Meso‐ and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arab. J. Chem. 9 (2): 179–189.
62 62 Jayakumar, M., Karmegam, N., Gundupalli, M.P. et al. (2021). Heterogeneous base catalysts: synthesis and application for biodiesel production – a review. Bioresour. Technol. 331: 125054.
63 63 Ajala, E.O., Ajala, M.A., Ajao, A.O. et al. (2020). Calcium‐carbide residue: a precursor for the synthesis of CaO–Al2O3–SiO2–CaSO4 solid acid catalyst for biodiesel production using waste lard. Chem. Eng. J. Adv. 4: 100033.
64 64 Hajjari, M., Tabatabaei, M., Aghbashlo, M., and Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste‐oil biodiesel utilization. Renew. Sustain. Energy Rev. 72: 445–464.
65 65 Dhawane, S.H., Karmakar, B., Ghosh, S., and Halder, G. (2018). Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. J. Environ. Chem. Eng. 6 (4): 3971–3980.
66 66 Lokman, I.M., Rashid, U., Yunus, R., and Taufiq‐Yap, Y.H. (2014). Carbohydrate‐derived solid acid catalysts for biodiesel production from low‐cost feedstocks: a review. Catal. Rev. Sci. Eng. 56 (2): 187–219.
67 67 Kächele, R., Nurkowski, D., Martin, J. et al. (2019). An assessment of the viability of alternatives to biodiesel transport fuels. Appl. Energy 251: 113363.
68 68 Musa, I.A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 25 (1): 21–31.
69 69 Jain, S. (2019). The production of biodiesel using Karanja (Pongamia pinnata) and Jatropha (Jatropha curcas) oil. Biomass, Biopolymer‐Based Materials, and Bioenergy 17: 397–408.
70 70 Alsharifi, M., Znad, H., Hena, S., and Ang, M. (2017). Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method. Renew. Energy 114: 1077–1089.
71 71 Ye, W., Gao, Y., Ding, H. et al. (2016). Kinetics of transesterification of palm oil under conventional heating and microwave irradiation, using CaO as heterogeneous catalyst. Fuel 180: 574–579.
72 72 Boz, N., Degirmenbasi, N., and Kalyon, D.M. (2013). Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Appl. Catal. B Environ. 138–139: 236–242.
73 73 Ramli, A., Farooq, M., Naeem, A. et al. (2017). Bifunctional heterogeneous catalysts for biodiesel production using low cost feedstocks: a future perspective. In: Front Bioenergy Biofuels (ed. E. Jacob‐Lopes and L.Q. Zepka). IntechOpen.
74 74 Dehghan, L., Golmakani, M.T., and Hosseini, S.M.H. (2019). Optimization of microwave‐assisted accelerated transesterification of inedible olive oil for biodiesel production. Renew. Energy 138: 915–922.
75 75 Banković‐Ilić, I.B., Stojković, I.J., Stamenković, O.S. et al. (2014). Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev. 32: 238–254.
76 76 Ambat, I., Srivastava, V., and Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. 90: 356–369.
77 77 Anto, S., Karpagam, R., Renukadevi, P. et al. (2019). Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle. Fuel 255: 115789.
78 78 Awogbemi, O., Von Kallon, D.V., and Aigbodion, V.S. (2021). Trends in the development and utilization of agricultural wastes as heterogeneous catalyst for biodiesel production. J. Energy Inst. 98: 244–258.
79 79 Zailan, Z., Tahir, M., Jusoh, M., and Zakaria, Z.Y. (2021). A review of sulfonic group bearing porous carbon catalyst for biodiesel production. Renew. Energy 175: 430–452.
80 80 Dahman, Y., Dignan, C., Fiayaz, A., and Chaudhry, A. (2019). An introduction to biofuels, foods, livestock, and the environment. Biomass, Biopolymer‐Based Materials, Bioenergy 241–276.
81 81 Kumar, D. and Singh, B. (2020). Effect of winterization and plant phenolic‐additives on the cold‐flow properties and oxidative stability of Karanja biodiesel. Fuel 262: 116631.
82 82 Mohiddin, M.N.B., Tan, Y.H., Seow, Y.X. et al. (2021). Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: a review. J. Ind. Eng. Chem. 98: 60–81.
83 83 Chong, C.C., Aqsha, A., Ayoub, M. et al. (2020). A review over the role of catalysts for selective short‐chain polyglycerol production from biodiesel derived waste glycerol. Environ. Technol. Innov. 19: 100859.
84 84 Yusuf, N.N.A.N., Kamarudin, S.K., and Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Convers. Manag. 52 (7): 2741–2751.
85 85 Bora, P., Boro, J., Konwar, L.J., and Deka, D. (2016). Formulation of microemulsion based hybrid biofuel from waste cooking oil – a comparative study with biodiesel. J. Energy Inst. 89 (4): 560–568.
86 86 Mohd Noor, C.W., Noor, M.M., and Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew. Sustain. Energy Rev. 94: 127–142.
87 87 Jitputti, J., Kitiyanan, B., Rangsunvigit, P. et al. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J. 116 (1): 61–66.
88 88 Abdul Kapor, N.Z., Maniam, G.P., Rahim, M.H.A., and Yusoff, M.M. (2017). Palm fatty acid distillate as a potential source for biodiesel production‐a review. J. Clean. Prod. 143: 1–9.
89 89 Li, H., Niu, S., Lu, C. et al. (2014). Transesterification catalyzed by industrial waste – lime mud doped with potassium fluoride and the kinetic calculation. Energy Convers. Manag. 86: 1110–1117.
90 90 de Luna, M.D.G., Cuasay, J.L., Tolosa, N.C., and Chung, T.W. (2017). Transesterification of soybean oil using a novel heterogeneous base catalyst: synthesis and characterization of Na‐pumice catalyst, optimization of transesterification conditions, studies on reaction kinetics and catalyst reusability. Fuel 209: 246–253.
91 91 Bayat, A., Baghdadi, M., and Bidhendi, G.N. (2018). Tailored magnetic nano‐alumina as an efficient catalyst for transesterification of waste cooking oil: optimization of biodiesel production using response surface methodology. Energy Convers. Manag. 177: 395–405.
92 92 Olutoye, M.A., Wong, S.W., Chin, L.H. et al. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium‐modified montmorillonite K10 catalyst. Renew. Energy 86: 392–398.
93 93 Wong, Y.C., Tan, Y.P., Taufiq‐Yap, Y.H. et al. (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel 162: 288–293.
94 94 Risso, R., Ferraz, P., Meireles, S. et al. (2018). Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Appl. Catal. A Gen. 567: 56–64.
95 95 Mansir, N., Teo, S.H., Rabiu, I., and Taufiq‐Yap, Y.H. (2018). Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chem. Eng. J. 347: 137–144.
96 96 Hazmi, B., Rashid, U., Taufiq‐yap, Y.H., and Ibrahim, M.L. (2020). Supermagnetic nano‐bifunctional catalyst from rice husk: synthesis, characterization and application for conversion of used cooking oil to biodiesel. Catalysts 10 (2): 225.
97 97 Yu, J., Tang, L., Pang, Y. et al. (2019). Magnetic nitrogen‐doped sludge‐derived biochar catalysts for persulfate activation: internal electron transfer mechanism. Chem. Eng. J. 364: 146–159.
98 98 Tan, Y.H., Abdullah, M.O., Nolasco‐Hipolito, C., and Ahmad Zauzi, N.S. (2017). Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken‐eggshell derived CaO. Renew. Energy 114: 437–447.
99 99 Ayoob, A.K. and Fadhil, A.B. (2020). Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non‐edible oils. Fuel 264: 116754.
100 100 Essamlali, Y., Amadine, O., Fihri, A., and Zahouily, M. (2019). Sodium modified fluorapatite as a sustainable solid bi‐functional catalyst for biodiesel production from rapeseed oil. Renew. Energy 133: 1295–1307. https://doi.org/10.1016/j.renene.2018.08.103.
101 101 Nisar, J., Razaq, R., Farooq, M. et al. (2017). Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew. Energy 101: 111–119.
102 102 Muciño, G.G., Romero, R., Ramírez, A. et al. (2014). Biodiesel production from used cooking oil and sea sand as heterogeneous catalyst. Fuel 138: 143–148.
103 103 Uzun, B.B., Kiliç, M., Özbay, N. et al. (2012). Biodiesel production from waste frying oils: optimization of reaction parameters and determination of fuel properties. Energy 44: 347–351.
104 104 Tan, Y.H., Abdullah, M.O., and Nolasco Hipolito, C. (2016). Comparison of biodiesel production between homogeneous and heterogeneous base catalysts. Appl. Mech. Mater. 833: 71–77.
105 105 Pastore, C., Barca, E., Del Moro, G. et al. (2015). Recoverable and reusable aluminium solvated species used as a homogeneous catalyst for biodiesel production from brown grease. Appl. Catal. A Gen. 501: 48–55.
106 106 Agarwal, M., Chauhan, G., Chaurasia, S.P., and Singh, K. (2012). Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. J. Taiwan Inst. Chem. Eng. 43 (1): 89–94.
107 107 Aslan, V. and Eryilmaz, T. (2020). Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy 209: 118386.
108 108 Vaishnavi Sree, J., Akhil Chowdary, B., Santosh Kumar, K. et al. (2021). Optimization of the biodiesel production from waste cooking oil using homogeneous catalyst and heterogeneous catalysts. Mater. Today Proc. 46: 4900–4908.
109 109 Koohikamali, S., Tan, C.P., and Ling, T.C. (2012). Optimization of sunflower oil transesterification process using sodium methoxide. Sci. World J. 2012: 475027.
110 110 Panchal, B.M., Deshmukh, S.A., and Sharma, M.R. (2016). Biodiesel from Thevetia peruviana seed oil with dimethyl carbonate using as an active catalyst potassium‐methoxide. Sains Malaysiana 45 (10): 1461–1468.
111 111 Sai, B.A.V.S.L., Subramaniapillai, N., Khadhar Mohamed, M.S.B., and Narayanan, A. (2020). Optimization of continuous biodiesel production from rubber seed oil (RSO) using calcined eggshells as heterogeneous catalyst. J. Environ. Chem. Eng. 8: 103603.
112 112 Wei, Z., Wang, Z., Tait, W.R.T. et al. (2018). Synthesis of green phosphors from highly active amorphous silica derived from rice husks. J. Mater. Sci. 53 (3): 1824–1832.
113 113 Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., and Sulaiman, N.M.N. (2013). The effects of catalysts in biodiesel production: a review. J. Ind. Eng. Chem. 19 (1): 14–26.
114 114 Firouzjaee, M.H. and Taghizadeh, M. (2017). Optimization of process variables for biodiesel production using the nanomagnetic catalyst CaO/NaY‐Fe3O4. Chem. Eng. Technol. 40 (6): 1140–1148.
115 115 Roschat, W., Siritanon, T., Kaewpuang, T., and Yoosuk, B. (2016). Economical and green biodiesel production process using river snail shells‐derived heterogeneous catalyst and co‐solvent method. Bioresour. Technol. 209: 343–350.
116 116 Singh, V., Yadav, M., and Sharma, Y.C. (2017). Effect of co‐solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel 203: 360–369.
117 117 Vargas, E.M., Neves, M.C., Tarelho, L.A.C., and Nunes, M.I. (2019). Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renew. Energy 136: 873–883.
118 118 Zhao, X., Wei, L., Cheng, S., and Julson, J. (2017). Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts 7 (3): 83.
119 119 Saba, T., Estephane, J., El Khoury, B. et al. (2016). Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renew. Energy 90: 301–306.
120 120 Ho, W.W.S., Ng, H.K., Gan, S., and Tan, S.H. (2014). Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil. Energy Convers. Manag. 88: 1167–1178.
121 121 Arzamendi, G., Campo, I., Arguiñarena, E. et al. (2008). Synthesis of biodiesel from sunflower oil with silica‐supported NaOH catalysts. Journal of Chemical Technology and Biotechnology. 83: 862–870. https://doi.org/10.1002/jctb.1881.
122 122 Abdelhady, H.H., Elazab, H.A., Ewais, E.M. et al. (2020). Efficient catalytic production of biodiesel using nano‐sized sugar beet agro‐industrial waste. Fuel 261: 116481.
123 123 Rajasekhar Reddy, B. and Vinu, R. (2018). Microwave‐assisted co‐pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Process. Technol. 178: 41–52.
124 124 Fattahi, N., Triantafyllidis, K., Luque, R., and Ramazani, A. (2019). Zeolite‐based catalysts: a valuable approach toward ester bond formation. Catalysts 9 (9): 758.
125 125 Rosazley, R., Shazana, M., Izzati, M. et al. (2016). Characterization of nanofibrillated cellulose produced from oil palm empty fruit bunch fiber (OPEFB) using ultrasound. J. Tempor. Issue Thoughts 6: 28–35.
126 126 Bala, D.D., Misra, M., and Chidambaram, D. (2017). Solid‐acid catalyzed biodiesel production, part I: biodiesel synthesis from low quality feedstock. J. Clean. Prod. 142: 4169–4177.
127 127 Fonseca, J.M., Teleken, J.G., de Cinque Almeida, V., and da Silva, C. (2019). Biodiesel from waste frying oils: methods of production and purification. Energy Convers. Manag. 184: 205–218.
128 128 Zeng, D., Zhang, Q., Chen, S. et al. (2016). Synthesis porous carbon‐based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater. 219: 54–58.
129 129 Wang, Y.T., Fang, Z., Yang, X.X. et al. (2018). One‐step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid‐base amphoteric nanoparticles. Chem. Eng. J. 348: 929–939.
130 130 Liu, R., Sarker, M., Rahman, M.M. et al. (2020). Multi‐scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio‐oil production – a review. Prog. Energy Combust. Sci. 80: 450–464.
131 131 Hindryawati, N., Pragas, G., Karim, R., and Feng, K. (2014). Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Eng. Sci. Technol. Int. J. 17 (2): 95–103.
132 132 Zhang, F., Wu, X.H., Yao, M. et al. (2016). Production of biodiesel and hydrogen from plant oil catalyzed by magnetic carbon‐supported nickel and sodium silicate. Green Chem. 18 (11): 3302–3314.
133 133 Shu, Q., Nawaz, Z., Gao, J. et al. (2010). Synthesis of biodiesel from a model waste oil feedstock using a carbon‐based solid acid catalyst: reaction and separation. Bioresour. Technol. 101 (14): 5374–5384.
134 134 Sangaletti‐Gerhard, N., Cea, M., Risco, V., and Navia, R. (2015). In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresour. Technol. 179: 63–70.
135 135 Sirisomboonchai, S., Abuduwayiti, M., Guan, G. et al. (2015). Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 95: 242–247.
136 136 Zulqarnain, Yusoff, M.H.M., Ayoub, M. et al. (2021). Solvent extraction and performance analysis of residual palm oil for biodiesel production: experimental and simulation study. J. Environ. Chem. Eng. 9 (4): 105519.
137 137 Sagiroglu, A. (2008). Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase. Artif Cells, Blood Substitutes, Biotechnol. 36 (2): 138–149.
138 138 Pedro, K.C.N.R., Parreira, J.M., Correia, I.N. et al. (2018). Enzymatic biodiesel synthesis from acid oil using a lipase mixture. Quim Nova 41 (3): 284–291.
139 139 Santaraite, M., Sendzikiene, E., Makareviciene, V., and Kazancev, K. (2020). Biodiesel production by lipase‐catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media. Energies 13 (10): 2588.
140 140 Peñarrubia Fernandez, I.A., Liu, D.H., and Zhao, J. (2017). LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Resour. Conserv. Recycl. 119: 117–127.
141 141 Zhong, L., Jiao, X., Hu, H. et al. (2021). Activated magnetic lipase‐inorganic hybrid nanoflowers: a highly active and recyclable nanobiocatalyst for biodiesel production. Renew. Energy 171: 825–832.
142 142 Rachmadona, N., Amoah, J., Quayson, E. et al. (2020). Lipase‐catalyzed ethanolysis for biodiesel production of untreated palm oil mill effluent. Sustain. Energy Fuels 4 (3): 1105–1111.
143 143 Sarno, M. and Iuliano, M. (2018). Active biocatalyst for biodiesel production from spent coffee ground. Bioresour. Technol. 266: 431–438.
144 144 Petronikolou, N. and Nair, S.K. (2015). Biochemical studies of mycobacterial fatty acid methyltransferase: a catalyst for the enzymatic production of biodiesel. Chem. Biol. 22 (11): 1480–1490.
145 145 Guo, J., Sun, S., and Liu, J. (2020). Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst. Fuel 267: 117323.
146 146 Shalini, P., Deepanraj, B., Vijayalakshmi, S., and Ranjitha, J. (2021). Synthesis and characterisation of lipase immobilised magnetic nanoparticles and its role as a catalyst in biodiesel production. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.07.027.
147 147 Lai, J.Q., Hu, Z.L., Sheldon, R.A., and Yang, Z. (2012). Catalytic performance of cross‐linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochem. 47 (12): 2058–2063.
148 148 Adewale, P., Dumont, M.J., and Ngadi, M. (2016). Enzyme‐catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chem. Eng. J. 284: 158–165.
149 149 Firdaus, M.Y., Guo, Z., and Fedosov, S.N. (2016). Development of kinetic model for biodiesel production using liquid lipase as a biocatalyst, esterification step. Biochem. Eng. J. 105: 52–61.
150 150 Ribeiro, L.M.O., da Santos, B.C., S., and Almeida, R.M.R.G. (2012). Studies on reaction parameters influence on ethanolic production of coconut oil biodiesel using immobilized lipase as a catalyst. Biomass Bioenerg. 47: 498–503.
151 151 Toldrá‐Reig, F., Mora, L., and Toldrá, F. (2020). Developments in the use of lipase transesterification for biodiesel production from animal fat waste. Appl. Sci. 10 (15): 5085.
152 152 João, J.H., Tres, M.V., Jahn, S.L., and de Oliveira, J.V. (2020). Lipases in liquid formulation for biodiesel production: current status and challenges. Biotechnol. Appl. Biochem. 67: 648–667.
153 153 Yan, J., Zheng, X., Du, L., and Li, S. (2014). Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol. Biofuels 7 (1): 1–8.
154 154 Zhang, H., Liu, T., Zhu, Y. et al. (2020). Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil. Renew. Energy 145: 1246–1254.
155 155 Nasaruddin, R.R., Alam, M.Z., Jami, M.S., and Salihu, A. (2016). Statistical optimization of ethanol‐based biodiesel production from sludge palm oil using locally produced Candida cylindracea lipase. Waste Biomass Valor. 7 (1): 87–95.
156 156 Yan, W., Li, F., Wang, L. et al. (2017). Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library. Biotechnol. Rep. 14: 27–33.
157 157 Jayaraman, J., Alagu, K., Appavu, P. et al. (2020). Enzymatic production of biodiesel using lipase catalyst and testing of an unmodified compression ignition engine using its blends with diesel. Renew. Energy 145: 399–407.
158 158 Garlapati, V., Kant, R., Kumari, A. et al. (2013). Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sustain. Chem. Process. 1 (1): 11.
159 159 Pollardo, A.A., Lee, H.S., Lee, D. et al. (2017). Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant. BMC Biotechnol. 17 (1): 70.
160 160 Binhayeeding, N., Klomklao, S., Prasertsan, P., and Sangkharak, K. (2020). Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renew. Energy 162: 1819–1827.
161 161 Nguyen, H.C., Liang, S.H., Chen, S.S. et al. (2018). Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energy Convers. Manag. 158: 168–175.
162 162 Quayson, E., Amoah, J., Hama, S. et al. (2020). Immobilized lipases for biodiesel production: current and future greening opportunities. Renew. Sust. Energ. Rev. 134: 110355.
163 163 Allami, H.A. and Nayebzadeh, H. (2021). The assessment of the engine performance and emissions of a diesel engine fueled by biodiesel produced using different types of catalyst. Fuel 305: 121525.
164 164 Gupta, J., Agarwal, M., and Dalai, A.K. (2020). An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. J. Ind. Eng. Chem. 88: 58–77.