Читать книгу Handbook on Intelligent Healthcare Analytics - Группа авторов - Страница 46
2.2 Big Data in Knowledge Engineering
ОглавлениеInformation plays a major part in big data rules; the technologies for intervention can accumulate the information according to the needs. There are many computations mathematically performed for streaming data that are used as per requirements. The Internet provides many resources to learn and a platform for online learners. In such cases, big data that has multiple source providing ways can develop applications according to customers’ expectations. There are many functions used for online learning techniques such as fragmented knowledge transfer that relies on big data models. Also, mining can extract the information based on demand that can create a framework that can be used according to the knowledge of engineering.
The software from IBM that was built with NN [13] optimized resources are also having certain rules to be achieved. They are applied to domains such as machine learning, computer vision, and NLP. Online learning not only used a fragmented knowledge method but also used the translation for various language learners. Those accessible translations are associated with libraries that support the online providers to reach the reader or learner in a fast or rapid manner. Mobile applications are also interconnected for knowledge services using big data learning procedures that can interpret the various users mode. Intelligent systems in AI such as robotics, automatic sensors, and latest technologies are all designed with the help of big data framework. There are four generations in knowledge engineering, which are the driving force of consuming data and massive volume of data access through the internet. To understand this generation, cognitive tasks are introduced, which have the sequential flow toward the customers’ expectations.