Читать книгу Catalytic Asymmetric Synthesis - Группа авторов - Страница 44

REFERENCES

Оглавление

1 1. (a) Hajos, Z. G.; Parrish, D. R. German Patent DE 2102623, 1971. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615–1621.

2 2. (a) Eder, U.; Sauer, G.; Wiechert, R. German Patent DE 2014757, 1971. (b) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496–497.

3 3. (a) List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395–2396. (b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C. F. J. Am. Chem. Soc. 2001, 123, 5260–5267. Review of enamine, see; (c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–5569.

4 4. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. V. C. J. Am. Chem. Soc. 2000, 122, 4243–4244. Reviews of iminium ion: (b) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta, 2006, 39, 79–87. (c) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem Rev. 2007, 107, 5416–5470.

5 5. Selected reviews on organocatalysis: (a) Asymmetric Organocatalysis 1: Lewis Base and Acid Catalysts, (Ed.: B. List) Stuttgart: Thieme, 2012. (b) Asymmetric Organocatalysis 2: Brønsted Base and Acid catalysts, and Additional Topics (Ed.: K. Maruoka) Stuttgart: Thieme, 2012.

6 6. Watson, A. J. B.; MacMillan, D. W. C. Catalytic Asymmetric Synthesis, 3rd ed, (Ed.: I. Ojima). Hoboken, John Wiley & Sons, 2010, pp. 39–57.

7 7. Reviews, see: (a) Palomo, C.; Mielgo, A. Angew. Chem. Int. Ed. 2006, 45, 7876–7880. (b) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922–948. (c) Xu, L. W.; Li, L.; Shi, Z. H. Adv. Synth. Catal. 2010, 352, 243–279. (d) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. 2012, 4, 248–264. (e) Wróblewska, A. Synlett 2012, 23, 953–954. (f) Gotoh, H.; Hayashi, Y. Sustainable Catalysis (Eds.: Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T.) Hoboken: Wiley, 2013, pp. 287–316. (g) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 13860–13874.

8 8. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794–797.

9 9. Hayashi, Y.; Gotoh, H.; Hayashi T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212–4215.

10 10. Reviews: (a) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 7496–7504. (b) Xu, L.‐W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807–1821. (c) Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 9748–9770.

11 11. (a) Lakhdar, S.; Tokuyasu, T.; Mayr, H. Angew. Chem. Int. Ed. 2008, 47, 8723–8726. (b) Mayr, H.; Lakhdar, S.; Maji, B.; Ofial, A. R. Beilstein J. Org. Chem. 2012, 8, 1458–1478. (c) Lakhdar, S.; Maji, B.; Mayr, H. Angew. Chem. Int. Ed. 2012, 51, 5739–5742. (d) An, F.; Maji, B.; Min, E.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2020, 142, 1526–1547.

12 12. (a) List, B. Amine‐catalyzed aldol reactions, in: Modern Aldol Reactions (Ed.: R. Mahrwald) Weinheim: Wiley‐VCH, 2004, Chapter 4, pp. 161–200. (b) Mase, N.; Hayashi, Y., The aldol reaction: organocatalysis approach, in: Comprehensive Organic Synthesis, 2nd ed (Eds.: P. Knochel, G. A. Molander) Amsterdam: Elsevier, 2014; Chapter 2.07, pp. 273–339. (c) Yamashita, Y.; Yasukawa, T.; Yoo, W. J.; Kitanosono, T.; Kobayashi, S. Chem. Soc. Rev. 2018, 47, 4388–4480.

13 13. (a) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc. 2003, 125, 2475–2479. (b) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H. Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558–569.

14 14. Kano, T.; Yamaguchi, Y.; Tanaka Y.; Maruoka, K. Angew. Chem. Int. Ed. 2007, 46, 1738–1740.

15 15. Hayashi, Y.; Itoh, T.; Aratake, S.; Ishikawa, H. Angew. Chem. Int. Ed. 2008, 47, 2082–2084.

16 16. (a) Urushima, T.; Yasui, Y.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 2966–2969. (b) Hayashi, Y.; Yasui, Y.; Kawamura, T.; Kojima, M.; Ishikawa, H. Synlett 2011, 485–488. (c) Hayashi, Y.; Yasui, Y.; Kawamura, T.; Kojima, M.; Ishikawa, H. Angew. Chem. Int. Ed. 2011, 50, 2804–2807. (d) Hayashi, Y.; Yasui, Y.; Kojima, M.; Kawamura, T.; Ishikawa, H. Chem. Commun. 2012, 48, 4570–4572. (e) Hayashi, Y.; Kojima, M. ChemCatChem. 2013, 5, 2883–2885. (f) Hayashi, Y.; Kojima, M.; Yasui, Y.; Kanda, Y.; Mukaiyama, T.; Shomura, H.; Nakamura, D.; Ritmaleni, L.; Sato, I. ChemCatChem. 2013, 5, 2887–2892. (g) Yasui, Y.; Benohoud, M.; Sato, I.; Hayashi, Y. Chem. Lett. 2014, 43, 556–558. (h) Hayashi, Y.; Watanabe, S.; Yasui, Y.; Umemiya, S. ChemCatChem. 2015, 7, 1646–1649. (j) Hayashi, Y.; Nakamura, D.; Yasui, Y.; Iwasaki, K.; Chiba, H. Adv. Synth. Catal. 2016, 358, 2345–2351.

17 17. (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336–9337.Review of Mannich reaction, see; (b) Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29–41.

18 18. (a) Córdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas III, C. F. J. Am. Chem. Soc. 2002, 124, 1842–1843. (b) Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas III, C. F. J. Am. Chem. Soc. 2002, 124, 1866–1867.

19 19. (a) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 16408–16409. (b) Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2009, 48, 1838–1840. (c) Kano, T.; Sakamoto, R.; Akakura, M.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 7516–7520.

20 20. (a) A. Córdova, Chem. Comm. 2006, 1760–1762. (b) Hayashi, Y.; Sakamoto, D.; Shomura, H.; Hashizume, D. Chem. Eur. J. 2013, 19, 7678–7681.

21 21. (a) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjœrsgaard, A.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 3703–3706. (b) Steiner, D. D.; Mase, N.; Barbas III, C. F. Angew. Chem. Int. Ed. 2005, 44, 3706–3710. (c) Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826–8828.

22 22. (a) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108–4109. (b) Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790–4791.

23 23. (a) Bertelsen, S.; Halland, N.; Bachmann, S.; Marigo, M.; Braunton, A.; Jørgensen, K. A. Chem. Commun. 2005, 4821–4823. (b) Kano, T.; Ueda, M.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 3728–3729.

24 24. Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 1790–1793.

25 25. (a) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808–10809. (b) Zhong, G. Angew. Chem. Int. Ed. 2003, 42, 4247–4250. (c) Bøgevig, A.; Sundén, H.; Córdova, A. Angew. Chem. Int. Ed. 2004, 43, 1109–1112. (d) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem. Int. Ed. 2004, 43, 1112–1115.

26 26. Hayashi, Y.; Nariyoshi, U.; Hirama, T. Org. Lett. 2017, 19, 4155–4158.

27 27. (a) Patora‐Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y. Helv. Chim. Acta, 2011, 94, 719–745. (b) Seebach, D.; Sun, X.; Ebert, M. O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M. Helv. Chim. Acta 2013, 96, 799–852.

28 28. (a) Mossé, S.; Alexakis, A. Org. Lett. 2005, 7, 4361–4364. (b) Landa, A.; Maestro, M.; Masdeu, C.; Puente, A.; Vera, S.; Oiarbide, M.; Palomo, C. Chem. Eur. J. 2009, 15, 1562–1565.

29 29. Sakamoto, D.; Hayashi, Y. Chem. Lett. 2018, 47, 833–835.

30 30. Hayashi, Y.; Kranidiotis‐Hisatomi, N.; Sakamoto, D.; Oritani, K.; Kawamoto, T.; Kamimura, A. Eur. J. Org. Chem. 2018, 6843–6847.

31 31. Hayashi, Y.; Odoh, A. S.; Kranidiotis‐Hisatomi, N. Chem. Cat. Chem. 2020, 12, 2412–2415.

32 32. (a) Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem. Int. Ed. 2008, 47, 1871–1874. (b) Wiesner, M.; Revell, J. D.; Tonazzi, S.; Wennemers, H. J. Am. Chem. Soc. 2008, 130, 5610–5611. (c) Wiesner, M.; Upert, G.; Angelici, G.; Wennemers, H. J. Am. Chem. Soc. 2010, 132, 6–7.

33 33. (a) Arceo, E.; Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 5290–5292. (b) Li, J. L.; Liu, T. Y.; Chen, Y. C. Acc. Chem Res. 2012, 45, 1491–1500.

34 34. Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973–12980.

35 35. Halskov, K. S.; Donslund, B. S.; Barfüsser, S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2014, 53, 4137–4141.

36 36. Jia, Z. J.; Jiang, H.; Li, J. L.; Gschwend, B.; Li, Q. Z.; Yin, X.; Grouleff, J.; Chen, Y. C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053–5061.

37 37. Gotoh, H.; Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2015, 21, 12337–12346.

38 38. (a) Gotoh, H.; Hayashi, Y. Org. Lett. 2007, 9, 2859–2862. (b) Hayashi, Y.; Samanta, S.; Gotoh, H.; Ishikawa, H. Angew. Chem. Int. Ed. 2008, 47, 6634–6637.

39 39. (a) Gotoh, H.; Masui, R; Ogino, H.; Shoji, M.; Hayashi, Y. Angew. Chem. Int. Ed. 2006, 45, 6853–6856. (b) Gotoh, H.; Ogino, H.; Ishikawa, H.; Hayashi, Y. Tetrahedron 2010, 66, 4894–4899.

40 40. (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370–4371. (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173. (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 7894–7895.

41 41. Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874–9875.

42 42. (a) Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006, 45, 4305–4309. (b) Gotoh, H.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2007, 9, 5307–5309. (c) Franke, P. T.; Richter, B.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 6317–6321. (d) Rueping, M.; Sugiono, E.; Merino, E. Chem. Eur. J. 2008, 14, 6329–6332.

43 43. Bertelsen, S.; Dinér, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 1536–1537.

44 44. (a) Dinér, P.; Nielsen, M.; Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2007, 46, 1983–1987. (b) Jiang, H.; Nielsen, J. B.; Nielsen, M.; Jørgensen, K. A. Chem. Eur. J. 2007, 13, 9068–9075.

45 45. (a) Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. Angew. Chem. Int. Ed. 2007, 46, 4504–4506. (b) Ibrahem, I.; Rios, R.; Vesely, J.; Hammar, P.; Eriksson, L.; Himo, F.; Córdova, A. Angew. Chem. Int. Ed. 2007, 46, 4507–4510.

46 46. Hayashi, Y.; Umekubo, N. Angew. Chem. Int. Ed. 2018, 57, 1958–1962.

47 47. Umekubo, N.; Terunuma, T.; Kwon, E.; Hayashi, Y. Chem. Sci. 2020, 11, 11293–11297.

48 48. Domino reaction, see: (a) Tietze, L. F. Chem Rev. 1996, 96, 115–136. (b) Domino Reactions, (Ed. Tietze, L. F.), Wiley‐VCH, Weinheim, 2014. Cascade reaction, see: (c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134–7186. (d) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551–564.Tandem reaction, see: (e) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137–166.

49 49. Reviews: (a) Grondal, V; Jeanty, M.; Enders, D. Nature Chem. 2010, 2, 167–178. (b) Albrecht, L.; Jiang, H.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 8492–8509. (c) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237–294. (d) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390–2431. (e) Hong, B. C.; Raja, A.; Sheth, V. M. Synthesis 2015, 47, 3257–3285. (f) Y. Hayashi, Chem. Sci. 2016, 7, 866–880. (g) Chanda, T.; Zhao, J. C.‐G. Adv. Synth. Catal. 2018, 360, 2–79.

50 50. Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. J. Am. Chem. Soc. 2005, 127, 15036–15037.

51 51. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051–15053.

52 52. Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710–15711.

53 53. Enders, D.; Hüttl, M. R. M.; Raabe, G. Nature 2006, 441, 861–863.

54 54. Chauhan, P.; Mahajan, S.; Enders, D. Acc. Chem. Res. 2017, 50, 2809–2821.

55 55. Dochain, S.; Vetica, F.; Putreddy, R.; Rissanen, K.; Enders, D. Angew. Chem. Int. Ed. 2016, 55, 16153–16155.

56 56. Enders, D.; Joie, C.; Deckers, K. Chem. Eur. J. 2013, 19, 10818–10821.

57 57. (a) Reyes‐Rodriguéz, G. J.; Rezayee, N. M.; Vidal‐Albalat, A.; Jørgensen, K. A. Chem. Rev. 2019, 119, 4221–4260. (b) Wang, Z. Molecules 2019, 24, 3412–3450. (c) Parella, R.; Jakkampudi, S.; Zhao, J. C.‐G. ChemistrySelect 2021, 6, 2252–2280.

58 58. Jhuo, D.‐H.; Hong, B.‐C.; Chang, C.‐W.; Lee, G.‐H. Org. Lett. 2014, 16, 2724–2727.

59 59. (a) Shiomi, S.; Sugahara, E.; Ishikawa, H. Chem. Eur. J. 2015, 21, 14758–14763. (b) Shiomi, S.; Misaka, R.; Kaneko, M.; Ishikawa, H. Chem. Sci. 2019, 10, 9433–9437.

60 60. Bradshaw, B.; Luque‐Corredera, C.; Bonjoch, J. Org. Lett. 2013, 15, 326–329.

61 61. (a) Hayashi, Y.; Koshino, S.; Ojima, K.; Kwon, E. Angew. Chem. Int. Ed. 2017, 56, 11812–11815. (b) Koshino, S.; Kwon, E.; Hayashi, Y. Eur. J. Org. Chem. 2018, 5629–5638.

62 62. Jones, S. B.; Simmons, B.; MacMillan, D. W. C. Nature 2011, 475, 183–188.

63 63. Hayashi, Y.; Umemiya, S. Angew. Chem. Int. Ed. 2013, 52, 3450–3452.

64 64. (a) Umekubo, N.; Suga, Y.; Hayashi, Y. Chem. Sci. 2020, 11, 1205–1209. (b) Umekubo, N.; Hayashi, Y. Eur. J. Org. Chem. 2020, 29, 6221–6227.

65 65. Umekubo, N.; Hayashi, Y. Org. Lett. 2020, 22, 9365–9370.

66 66. Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633–658.

67 67. Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628–13630.

68 68. Cai, M.; Xu, K.; Li, Y.; Nie, Z.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2021, 143, 1078–1087.

69 69. Reviews: (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745–2755. (b) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337–1378. (c) Chen, D.‐F.; Han, Z.‐Y.; Zhou, X.‐L.; Gong, L.‐Z. Acc. Chem. Res. 2014, 47, 2365–2377. (d) Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512–13570. (e) Meazza, M.; Rios, R. Synthesis 2016, 48, 960–973.

70 70. Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986–4987.

71 71. Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260–4263.

72 72. Skucas, E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134, 9090–9093.

73 73. Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972–2977.

74 74. Gualandi, A.; Mengozzi, L.; Wilson, C. M.; Cozzi, P. G. Chem. Asian J. 2014, 9, 984–995.

75 75. Li, M.; Datta, S.; Barber, D. M.; Dixon, D. J. Org. Lett. 2012, 14, 6350–6353.

76 76. Shen, H.‐C.; Zhang, L.; Chen, S.‐S.; Feng, J.; Zhang, B.‐W.; Zhang, Y.; Zhang, X.; Wu, Y.‐D.; Gong, L.‐Z. ACS Catal. 2019, 9, 791–797.

77 77. Liu, R.‐R.; Li, B.‐L.; Lu, J.; Shen, C.; Gao, J.‐R.; Jia, Y.‐X. J. Am. Chem. Soc. 2016, 138, 5198–5201.

78 78. Ikeda, M.; Miyake, Y.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2010, 49, 7289–7293.

79 79. Ibrahem, I.; Santoro, S.; Himo, F.; Córdova, A. Adv. Synth. Catal. 2011, 353, 245–252.

80 80. Ibrahem, I.; Breistein, P.; Córdova, A. Angew. Chem. Int. Ed. 2011, 50, 12036–12041.

81 81. Afewerki, S.; Breistein, P.; Pirttilä, K.; Deiana, L.; Dziedzic, P.; Ibrahem, I.; Córdova, A. Chem. Eur. J. 2011, 17, 8784–8788.

82 82. Ibrahem, I.; Ma, G.; Afewerki, S.; Córdova, A. Angew. Chem. Int. Ed. 2013, 52, 878–882.

83 83. Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32–33.

84 84. Maeda, H.; Yamada, S.; Itoh, H.; Hori, Y. Chem. Commun. 2012, 48, 1772–1774.

85 85. Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065–1068.

86 86. Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020–3023.

87 87. Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1029–1032.

Catalytic Asymmetric Synthesis

Подняться наверх