Читать книгу Renewable Integrated Power System Stability and Control - Hassan Bevrani - Страница 26
References
Оглавление1 1. Steinmetz, C.P. (1920). Power control and stability of electric generating stations. Transactions of the American Institute of Electrical Engineers XXXIX (2): 1215–1287.
2 2. Smith, J.R., Andersson, G., and Taylor, C.W. (1996). Annotated bibliography on power system stability controls: 1986–1994. IEEE Transactions on Power Systems 11 (2): 794–800.
3 3. Bevrani, H., Watanabe, M., and Mitani, Y. (2014). Power System Monitoring and Control. Wiley.
4 4. Bevrani, H. and Hiyama, T. (2009). On load‐frequency regulation with time delays: design and real time implementation, IEEE Transactions on Energy Conversion 24 (1): 292–300.
5 5. Bevrani, H. and Hiyama, T. (2011). Intelligent Automatic Generation Control. CRC Press.
6 6. Kundur, P. (1994). Power System Stability and Control, vol. 7. New York: McGraw‐Hill.
7 7. Kundur, P., Paserba, J., Ajjarapu, V. et al. (2004). Definition and classification of power system stability ieee/cigre joint task force on stability terms and definitions. IEEE Transactions on Power Systems 19 (3): 1387–1401.
8 8. Pierre, J.W., Trudnowski, D., Donnelly, M. et al. (2012). Overview of system identification for power systems from measured responses. IFAC Proceedings Volumes 45 (16): 989–1000.
9 9. Eriksson, R. and Soder, L. (2011). Wide‐area measurement system‐based subspace identification for obtaining linear models to centrally coordinate controllable devices. IEEE Transactions on Power Delivery 26 (2): 988–997.
10 10. Zhou, N., Lu, S., Singh, R., and Elizondo, M.A. (2011). Calibration of reduced dynamic models of power systems using phasor measurement unit (PMU) data. 2011 North American Power Symposium, Boston, MA (2011), pp. 1–7. doi: https://doi.org/10.1109/NAPS.2011.6024873.
11 11. Zhang, J., Lu, C., and Han, Y. (2013). MIMO identification of power system with low level probing tests: applicability comparison of subspace methods. IEEE Transactions on Power Systems 28 (3): 2907–2917.
12 12. Wiseman, B.P., Chen, Y., Xie, L., and Kumar, P. (2016). PMU‐based reduced‐order modeling of power system dynamics via selective modal analysis. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 1–5. IEEE.
13 13. Liu, H., Zhu, L., Pan, Z. et al. (2016). Comparison of MIMO system identification methods for electromechanical oscillation damping estimation. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA (2016), pp. 1–5. doi: https://doi.org/10.1109/PESGM.2016.7741834.
14 14. Tuttelberg, K., Kilter, J., and Uhlen, K. (2017). Comparison of system identification methods applied to analysis of inter‐area modes. Proceedings of International Power Systems Transients Conference 2017, Seoul, South Korea (26–29 June 2017).
15 15. Ghasemi, H. and Canizares, C.A. (2008). Confidence intervals estimation in the identification of electromechanical modes from ambient noise. IEEE Transactions on Power Systems 23 (2): 641–648.
16 16. Dosiek, L., Pierre, J.W., and Follum, J. (2013). A recursive maximum likelihood estimator for the online estimation of electromechanical modes with error bounds. IEEE Transactions on Power Systems 28 (1): 441–451.
17 17. Uhlen, K., Warland, L., Gjerde, J.O. et al. (2008). Monitoring amplitude, frequency and damping of power system oscillations with PMU measurements. 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA (2008), pp. 1–7, doi: https://doi.org/10.1109/PES.2008.4596661.
18 18. Tripathy, P., Srivastava, S.C., and Singh, S.N. (2011). A modified TLS‐ESPRIT‐based method for low frequency mode identification in power systems utilizing synchrophasor measurements. IEEE Transactions on Power Systems 26 (2): 719–727.
19 19. Rogers, K.M., Spadoni, R.D., and Overbye, T.J. (2011). Identification of power system topology from synchrophasor data. 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ (2011), pp. 1–8, doi: https://doi.org/10.1109/PSCE.2011.5772462.
20 20. Nabavi, S. and Chakrabortty, A. (2013). Topology identification for dynamic equivalent models of large power system networks. 2013 American Control Conference, Washington, DC, (2013), pp. 1138–1143. doi: https://doi.org/10.1109/ACC.2013.6579989.
21 21. Wang, X., Bialek, J.W., and Turitsyn, K. (2018). PMU‐based estimation of dynamic state jacobian matrix and dynamic system state matrix in ambient conditions. IEEE Transactions on Power Systems 33 (1): 681–690.
22 22. Tuttelberg, K., Kilter, J., Wilson, D., and Uhlen, K. (2018). Estimation of power system inertia from ambient wide area measurements. IEEE Transactions on Power Systems 33 (6): 7249–7257.
23 23. Zeng, F., Zhang, J., Zhou, Y., and Qu, S. (2020). Online identification of inertia distribution in normal operating power system. IEEE Transactions on Power Systems 35 (4): 3301–3304. https://doi.org/10.1109/TPWRS.2020.2986721.
24 24. Concordia, C. and Kirchmayer, L. (1953). Tie‐line power and frequency control of electric power systems [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems 72 (3): 562–572.
25 25. System Controls Subcommittee of the Power System Engineering Committee of the IEEE Power Group (1970). IEEE standard definitions of terms for automatic generation control on electric power systems. IEEE Transactions on Power Apparatus and Systems PAS‐89 (6): 1356–1364.
26 26. I. C. Report (1973). Dynamic models for steam and hydro turbines in power system studies. IEEE Transactions on Power Apparatus and Systems PAS‐92 (6): 1904–1915.
27 27. Jaleeli, N., VanSlyck, L.S., Ewart, D.N. et al. (1992). Understanding automatic generation control. IEEE Transactions on Power Systems 7 (3): 1106–1122.
28 28. Pathak, N., Bhatti, T.S., and Verma, A. (2017). Accurate modelling of discrete AGC controllers for interconnected power systems. IET Generation, Transmission & Distribution 11 (8): 2102–2114.
29 29. Moawwad, A., El‐Saadany, E.F., and El Moursi, M.S. (2018). Dynamic security‐constrained automatic generation control (AGC) of integrated ac/dc power networks. IEEE Transactions on Power Systems 33 (4): 3875–3885.
30 30. Ledva, G.S., Vrettos, E., Mastellone, S. et al. (2018). Managing communication delays and model error in demand response for frequency regulation. IEEE Transactions on Power Systems 33 (2): 1299–1308.
31 31. Ibraheem, P., Kumar, and Kothari, D.P. (2005). Recent philosophies of automatic generation control strategies in power systems. IEEE Transactions on Power Systems 20 (1): 346–357.
32 32. Bevrani, H. (2014). Robust Power System Frequency Control, 2e. Gewerbestrasse, Switzerland: Springer.
33 33. Ulbig, A., Borsche, T.S., and Andersson, G. (2014). Impact of low rotational inertia on power system stability and operation. IFAC Proceedings Volumes 47 (3): 7290–7297.
34 34. Jaleeli, N. and VanSlyck, L.S. (1999). NERC's new control performance standards. IEEE Transactions on Power Systems 14 (3): 1092–1099.
35 35. Hain, Y., Kulessky, R., and Nudelman, G. (2000). Identification‐based power unit model for load‐frequency control purposes. IEEE Transactions on Power Systems 15 (4): 1313–1321.
36 36. Chang‐Chien, L.R., Hoonchareon, N.‐B., Ong, C.‐M., and Kramer, R.A. (2003). Estimation of /spl beta/ for adaptive frequency bias setting in load frequency control. IEEE Transactions on Power Systems 18 (2): 904–911.
37 37. Wilches‐Bernal, F., Concepcion, R., Neely, J.C. et al. (2018). Communication enabled fast acting imbalance reserve (CE‐FAIR). IEEE Transactions on Power Systems 33 (1): 1101–1103.
38 38. Zhang, G. and McCalley, J.D. (2018). Estimation of regulation reserve requirement based on control performance standard. IEEE Transactions on Power Systems 33 (2): 1173–1183.
39 39. Polajzer, B., Brezovnik, R., and Ritonja, J. (2017). Evaluation of load frequency control performance based on standard deviational ellipses. IEEE Transactions on Power Systems 32 (3): 2296–2304.
40 40. Avila, T., Gutierrez, E., and Chavez, H. (2017). Performance standard‐compliant secondary control: the case of Chile. IEEE Latin America Transactions 15 (7): 1257–1262.
41 41. Douglas, L.D., Green, T.A., and Kramer, R.A. (1994). New approaches to the AGC nonconforming load problem. IEEE Transactions on Power Systems 9 (2): 619–628. https://doi.org/10.1109/59.317682.
42 42. Trovato, V., Sanz, I.M., Chaudhuri, B., and Strbac, G. (2017). Advanced control of thermostatic loads for rapid frequency response in Great Britain. IEEE Transactions on Power Systems 32 (3): 2106–2117.
43 43. Delavari, A. and Kamwa, I. (2018). Improved optimal decentralized load modulation for power system primary frequency regulation. IEEE Transactions on Power Systems 33 (1): 1013–1025.
44 44. Pan, C. and Liaw, C. (1989). An adaptive controller for power system load‐frequency control. IEEE Transactions on Power Systems 4 (1): 122–128.
45 45. Vajk, I., Vajta, M., Keviczky, L. et al. (1985). Adaptive load‐frequency control of the Hungarian power system. Automatica 21 (2): 129–137.
46 46. Wang, W., Li, Y., Cao, Y. et al. (2018). Adaptive droop control of VSC‐MTDC system for frequency support and power sharing. IEEE Transactions on Power Systems 33 (2): 1264–1274.
47 47. Prostejovsky, A.M., Marinelli, M., Rezkalla, M. et al. (2018). Tuningless load frequency control through active engagement of distributed resources. IEEE Transactions on Power Systems 33 (3): 2929–2939.
48 48. Stankovic, A.M., Tadmor, G., and Sakharuk, T.A. (1998). On robust control analysis and design for load frequency regulation. IEEE Transactions on Power Systems 13 (2): 449–455.
49 49. Rerkpreedapong, D., Hasanovic, A., and Feliachi, A. (2003). Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Transactions on Power Systems 18 (2): 855–861.
50 50. Ojaghi, P. and Rahmani, M. (2017). LMI‐based robust predictive load frequency control for power systems with communication delays. IEEE Transactions on Power Systems 32 (5): 4091–4100.
51 51. Zhang, C., Jiang, L., Wu, Q.H. et al. (2013). Delay‐dependent robust load frequency control for time delay power systems. IEEE Transactions on Power Systems 28 (3): 2192–2201.
52 52. Zhao, J., Mili, L., and Milano, F. (2018). Robust frequency divider for power system online monitoring and control. IEEE Transactions on Power Systems 33 (4): 4414–4423.
53 53. Aliabadi, S.F., Taher, S.A., and Shahidehpour, M. (2018). Smart deregulated grid frequency control in presence of renewable energy resources by EVs charging control. IEEE Transactions on Smart Grid 9 (2): 1073–1085.
54 54. Wang, D., Liang, L., Hu, J. et al. (2018). Analysis of low‐frequency stability in grid tied DFIGs by non‐minimum phase zero identification. IEEE Transactions on Energy Conversion 33 (2): 716–729.
55 55. Liu, Y., Jiang, L., Wu, Q.H., and Zhou, X. (2017). Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC. IEEE Transactions on Power Systems 32 (2): 1553–1567.
56 56. Pradhan, C. and Bhende, C.N. (2017). Frequency sensitivity analysis of load damping coefficient in wind farm‐integrated power system. IEEE Transactions on Power Systems 32 (2): 1016–1029.
57 57. Golpira, H., Seifi, H., Messina, A.R., and Haghifam, M. (2016). Maximum penetration level of microgrids in large‐scale power systems: frequency stability viewpoint. IEEE Transactions on Power Systems 31 (6): 5163–5171.
58 58. Leon, A.E. (2018). Short‐term frequency regulation and inertia emulation using an MMC‐based MTDC system. IEEE Transactions on Power Systems 33 (3): 2854–2863.
59 59. Rakhshani, E., Remon, D., Cantarellas, A.M. et al. (2017). Virtual synchronous power strategy for multiple HVDC interconnections of multi‐area AGC power systems. IEEE Transactions on Power Systems 32 (3): 1665–1677.
60 60. Li, D., Zhu, Q., Lin, S., and Bian, X.Y. (2017). A self‐adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Transactions on Energy Conversion 32 (1): 397–398.
61 61. Wu, Y., Yang, W., Hu, Y., and Dzung, P.Q. (2019). Frequency regulation at a wind farm using time varying inertia and droop controls. IEEE Transactions on Industry Applications 55 (1): 213–224.
62 62. Fang, J., Li, H., Tang, Y., and Blaabjerg, F. (2018). Distributed power system virtual inertia implemented by grid‐connected power converters. IEEE Transactions on Power Electronics 33 (10): 8488–8499.
63 63. Li, Y., Xu, Z., Ostergaard, J., and Hill, D.J. (2017). Coordinated control strategies for offshore wind farm integration via VSC‐HVDC for system frequency support. IEEE Transactions on Energy Conversion 32 (3): 843–856.
64 64. Ahmadyar, A.S. and Verbic, G. (2017). Coordinated operation strategy of wind farms for frequency control by exploring wake interaction. IEEE Transactions on Sustainable Energy 8 (1): 230–238.
65 65. Izadkhast, S., Garcia‐Gonzalez, P., Frias, P., and Bauer, P. (2017). Design of plug‐in electric vehicle's frequency‐droop controller for primary frequency control and performance assessment. IEEE Transactions on Power Systems 32 (6): 4241–4254.
66 66. Hwang, M., Muljadi, E., Jang, G., and Kang, Y.C. (2017). Disturbance‐adaptive short‐term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed. IEEE Transactions on Power Systems 32 (3): 1873–1881.
67 67. Attya, A.B.T. and Dominguez‐Garcia, J.L. (2018). Insights on the provision of frequency support by wind power and the impact on energy systems. IEEE Transactions on Sustainable Energy 9 (2): 719–728.
68 68. Tielens, P. and Van Hertem, D. (2017). Receding horizon control of wind power to provide frequency regulation. IEEE Transactions on Power Systems 32 (4): 2663–2672.
69 69. Garmroodi, M., Verbic, G., and Hill, D.J. (2018). Frequency support from wind turbine generators with a time‐variable droop characteristic. IEEE Transactions on Sustainable Energy 9 (2): 676–684.
70 70. Khooban, M., Dragicevic, T., Blaabjerg, F., and Delimar, M. (2018). Shipboard microgrids: a novel approach to load frequency control. IEEE Transactions on Sustainable Energy 9 (2): 843–852.
71 71. Benysek, G., Bojarski, J., Smolenski, R. et al. (2018). Application of stochastic decentralized active demand response (DADR) system for load frequency control. IEEE Transactions on Smart Grid 9 (2): 1055–1062.
72 72. Vrettos, E., Ziras, C., and Andersson, G. (2017). Fast and reliable primary frequency reserves from refrigerators with decentralized stochastic control. IEEE Transactions on Power Systems 32 (4): 2924–2941.
73 73. Short, J.A., Infield, D.G., and Freris, L.L. (2007). Stabilization of grid frequency through dynamic demand control. IEEE Transactions on Power Systems 22 (3): 1284–1293.
74 74. Molina‐Garcia, A., Bouffard, F., and Kirschen, D.S. (2011). Decentralized demand‐side contribution to primary frequency control. IEEE Transactions on Power Systems 26 (1): 411–419.
75 75. Zhao, H., Wu, Q., Huang, S. et al. (2018). Hierarchical control of thermostatically controlled loads for primary frequency support. IEEE Transactions on Smart Grid 9 (4): 2986–2998.
76 76. Yao, E., Wong, V.W.S., and Schober, R. (2017). Robust frequency regulation capacity scheduling algorithm for electric vehicles. IEEE Transactions on Smart Grid 8 (2): 984–997.
77 77. Ferraro, P., Crisostomi, E., Raugi, M., and Milano, F. (2017). Analysis of the impact of microgrid penetration on power system dynamics. IEEE Transactions on Power Systems 32 (5): 4101–4109.
78 78. Ferraro, P., Crisostomi, E., Shorten, R., and Milano, F. (2018). Stochastic frequency control of grid connected microgrids. IEEE Transactions on Power Systems 33 (5): 5704–5713.
79 79. Larsen, E. and Sener, F. (1996). Facts Applications. Catalogue No. 96TP116‐0.
80 80. IEEE (1990). Voltage Stability of Power Systems: Concepts, Analytical Tools and Industry Experience. IEEE Technical Report 90YH0358‐2‐PWR. IEEE/PES.
81 81. Balu, C. and Maratukulam, D. (1994). Power System Voltage Stability. McGraw‐Hill.
82 82. Van Cutsem, T. and Vournas, C. (2007). Voltage Stability of Electric Power Systems. Springer Science & Business Media.
83 83. Kamwa, I., Grondin, R., and Hebert, Y. (2001). Wide‐area measurement based stabilizing control of large power systems – a decentralized/hierarchical approach. IEEE Transactions on Power Systems 16 (1): 136–153.
84 84. Taylor, C.W., Erickson, D.C., Martin, K.E. et al. (2005). WACS wide‐area stability and voltage control system: R & D and online demonstration. Proceedings of the IEEE 93 (5): 892–906.
85 85. Andersson, G., Bel, C.A., and Canizares, C. (2009). Frequency and voltage control. In: Electric Energy Systems: Analysis and Operation. CRC Press.
86 86. Ilic, M.D., Liu, X., Leung, G. et al. (1995). Improved secondary and new tertiary voltage control. IEEE Transactions on Power Systems 10 (4): 1851–1862.
87 87. Corsi, S., Pozzi, M., Sabelli, C., and Serrani, A. (2004). The coordinated automatic voltage control of the Italian transmission grid‐Part I: reasons of the choice and overview of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1723–1732.
88 88. Corsi, S., Pozzi, M., Sforna, M., and Dell'Olio, G. (2004). The coordinated automatic voltage control of the italian transmission grid‐Part II: control apparatuses and field performance of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1733–1741.
89 89. Guo, Q., Sun, H., Zhang, M. et al. (2013). Optimal voltage control of PJM smart transmission grid: study, implementation, and evaluation. IEEE Transactions on Smart Grid 4 (3): 1665–1674.
90 90. Xiao, W., Torchyan, K., El Moursi, M.S., and Kirtley, J.L. (2014). Online supervisory voltage control for grid interface of utility‐level PV plants. IEEE Transactions on Sustainable Energy 5 (3): 843–853.
91 91. A. Awadhi, N. and Moursi, M.S.E. (2017). A novel centralized PV power plant controller for reducing the voltage unbalance factor at transmission level interconnection. IEEE Transactions on Energy Conversion 32 (1): 233–243. https://doi.org/10.1109/TEC.2016.2620477.
92 92. Glavic, M. and Van Cutsem, T. (2011). A short survey of methods for voltage instability detection. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI (2011), pp. 1–8, doi: https://doi.org/10.1109/PES.2011.6039311.
93 93. Robbins, B.A., Hadjicostis, C.N., and Dominguez‐Garcia, A.D. (2013). A two‐stage distributed architecture for voltage control in power distribution systems. IEEE Transactions on Power Systems 28 (2): 1470–1482.
94 94. Zeraati, M., Hamedani Golshan, M.E., and Guerrero, J.M. (2019). A consensus‐based cooperative control of PEV battery and PV active power curtailment for voltage regulation in distribution networks. IEEE Transactions on Smart Grid 10 (1): 670–680.
95 95. Li, Z., Guo, Q., Sun, H. et al. (2018). A distributed transmission‐distribution coupled static voltage stability assessment method considering distributed generation. IEEE Transactions on Power Systems 33 (3): 2621–2632.
96 96. Popovic, D.H., Hill, D.J., and Wu, Q. (2002). Optimal voltage security control of power systems. International Journal of Electrical Power & Energy Systems 24 (4): 305–320.
97 97. Larsson, M. and Karlsson, D. (2003). Coordinated system protection scheme against voltage collapse using heuristic search and predictive control. IEEE Transactions on Power Systems 18 (3): 1001–1006.
98 98. Ma, H. and Hill, D.J. (2018). A fast local search scheme for adaptive coordinated voltage control. IEEE Transactions on Power Systems 33 (3): 2321–2330.
99 99. Ghahremani, E. and Kamwa, I. (2016). Local and wide‐area PMU‐based decentralized dynamic state estimation in multi‐machine power systems. IEEE Transactions on Power Systems 31 (1): 547–562.
100 100. Raoufat, M.E., Tomsovic, K., and Djouadi, S.M. (2016). Virtual actuators for wide‐area damping control of power systems. IEEE Transactions on Power Systems 31 (6): 4703–4711.
101 101. Mohagheghi, S., Venayagamoorthy, G.K., and Harley, R.G. (2007). Optimal wide area controller and state predictor for a power system. IEEE Transactions on Power Systems 22 (2): 693–705.
102 102. Mithulananthan, N., Canizares, C.A., Reeve, J., and Rogers, G.J. (2003). Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. IEEE Transactions on Power Systems 18 (2): 786–792.
103 103. Bian, X.Y., Geng, Y., Lo, K.L. et al. (2016). Coordination of PSSs and SVC damping controller to improve probabilistic small‐signal stability \\of power system with wind farm integration. IEEE Transactions on Power Systems 31 (3): 2371–2382.
104 104. Padhy, B.P., Srivastava, S.C., and Verma, N.K. (2017). A wide‐area damping controller considering network input and output delays and packet drop. IEEE Transactions on Power Systems 32 (1): 166–176.
105 105. Giri, J. (2015). Proactive management of the future grid. IEEE Power and Energy Technology Systems Journal 2 (2): 43–52.
106 106. Wu, X., Dorer, F., and Jovanovic, M.R. (2016). Input‐output analysis and decentralized optimal control of inter‐area oscillations in power systems. IEEE Transactions on Power Systems 31 (3): 2434–2444.
107 107. Zacharia, L., Hadjidemetriou, L., and Kyriakides, E. (2018). Integration of renewables into the wide area control scheme for damping power oscillations. IEEE Transactions on Power Systems 33 (5): 5778–5786.
108 108. Surinkaew, T. and Ngamroo, I. (2016). Hierarchical coordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Transactions on Sustainable Energy 7 (3): 943–955.
109 109. Wang, S., Meng, X., and Chen, T. (2012). Wide‐area control of power systems through delayed network communication. IEEE Transactions on Control Systems Technology 20 (2): 495–503.
110 110. Mokhtari, M. and Aminifar, F. (2014). Toward wide‐area oscillation control through doubly‐fed induction generator wind farms. IEEE Transactions on Power Systems 29 (6): 2985–2992.
111 111. Zhang, Y. and Bose, A. (2008). Design of wide‐area damping controllers for inter‐area oscillations. IEEE Transactions on Power Systems 23 (3): 1136–1143.
112 112. Zenelis, I. and Wang, X. (2018). Wide‐area damping control for interarea oscillations in power grids based on PMU measurements. IEEE Control Systems Letters 2 (4): 719–724.
113 113. Youseian, R., Bhattarai, R., and Kamalasadan, S. (2017). Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators. IEEE Transactions on Power Systems 32 (6): 4818–4831.
114 114. El‐Guindy, A., Schaab, K., Schurmann, B. et al. (2017). Formal lpv control for transient stability of power systems. In: 2017 IEEE Power & Energy Society General Meeting, 1–5. IEEE.
115 115. Nogueira, F.G., Junior, W.B., da Costa Junior, C.T., and Lana, J.J. (2018). LPV‐based power system stabilizer: identification, control and field tests. Control Engineering Practice 72: 53–67.
116 116. Toth, R. (2010). Modeling and Identification of Linear Parameter‐Varying Systems, vol. 403. Springer.
117 117. Golpira, H. and Bevrani, H. (2020). Frequency Analysis Based Centralized Load Shedding and Island Detection Using PMU Data. Technical Report, Iran Grid Management Company, IGMC1927, (In Persian).