Читать книгу Heuschrecken haben keinen König - Helmut Satz - Страница 12
4
Die Stare von Rom
ОглавлениеFoto: Tommy Hansen
Der Palazzo Massimo in Rom liegt im Zentrum der Stadt, schräg gegenüber vom Hauptbahnhof Roma Termini und beherbergt eine der größten Sammlungen römischer und griechischer Kunst und Kultur. In den drei Wintern von 2004 bis 2006 fanden dort ungewöhnliche Vorgänge statt. Eine Gruppe von Wissenschaftlern der Universität Rom, Biologen und Physiker, hatten auf dem Dach des Palazzo stereografische Hochgeschwindigkeitskameras installiert, mit denen sie Millionen von Aufnahmen von Vogelschwärmen machten, die auf nahe gelegenen Bäumen übernachteten, um dann tagsüber zur Futtersuche auf ferne Felder zu fliegen. Es handelte sich dabei um die allgemein bekannten Stare (Abb. 4.1), die die Angewohnheit haben, bei der abendlichen Heimkehr längere Zeit in großen Schwärmen Kunstflugformationen vorzuführen – Massenflüge, die bis zu einer halben Stunde anhalten und an denen je Schwarm mehrere Tausend Vögel teilnehmen. So entstehen am Himmel dreidimensionale Gebilde, die herumwirbeln, sich ausdehnen und wieder zusammenziehen, aufsteigen und dann wieder herunterkommen. Wie diese Schwärme zustande kommen und koordiniert werden, war schon immer ein Rätsel; es gibt sicher keinen Choreografen, der die Manöver der Formationen plant und leitet. Die Schwärme müssen sich irgendwie selbst organisieren und ihre Bewegungen bestimmen, durch wechselseitigen Informationsaustausch zwischen den einzelnen Vögeln. Für die Biologen war das schon lange Zeit ein ganz wesentliches Rätsel. Vor den römischen Untersuchungen gab es nur sehr dürftige und kaum aufschlussreiche Daten über recht kleine Vogelgruppen. Andrerseits hatte der Computertheoretiker Craig Reynolds 1987 in Kalifornien ein Programm entwickelt, in dem er Roboter (er nannte sie boids,als Abkürzung von birdoids) frei umherlaufen ließ, mit nur einer einfachen örtlichen Regel:
Abb. 4.1 Europäischer Star (Sturnus vulgaris).
Bleib bei deinem Nachbarn, bewege dich in die gleiche Richtung wie er, aber bedränge ihn nicht.
Das Ergebnis dieses Programms war das Entstehen von Boid-Gruppen, die sich wie Schwärme im Raum bewegten. Es war somit sicher wichtig, zusätzliche und detailliertere Informationen über Struktur und Verhalten von wirklichen Vogelschwärmen zu bekommen.
Das Ziel des gerade erwähnten und von der Europäischen Union geförderten Forschungsprojekts STARFLAG in Rom war es, die empirische Basis für eine systematische Untersuchung dieses Phänomens zu schaffen. Als mein Kollege Giorgio Parisi, Physiker und Koordinator dieses EU-Projekts mir von den Ergebnissen berichtete, meinte ich sofort, dass man die dort gewonnenen Erkenntnisse mithilfe von ähnlichen Strukturen in der statistischen Physik würde erklären können. Giorgio erwiderte nur, dass ich damit leider zu spät käme – das sei schon vor mehr als zehn Jahren durchgeführt worden, noch vor den Aufnahmen in Rom, nur als eine Modellvorstellung, mit der der ungarische Physiker Tamás Viczek und seine Mitarbeiter zusammenfassend das Schwarmverhalten von verschiedensten Tieransammlungen untersuchen wollten, das von Vögeln wie auch das von Fischen. Wir werden später noch auf diese Arbeiten zurückkommen, nachdem wir einige Ergebnisse der statistischen Physik etwas näher erläutert haben.
Die Kommunikation innerhalb eines Vogelschwarms hat wie gesagt Forscher schon seit Langem vor Rätsel gestellt. Wie ist es möglich, dass so viele Vögel fast gleichzeitig zur Wendung ansetzen oder fast gleichzeitig landen? Wie wird Information innerhalb des Schwarms weitergegeben? Der britische Ornithologe Edmund Selous hat vor 100 Jahren vermutet, da sei eine Form von Telepathie im Spiel, es gäbe eine kollektive Intelligenz, die alle Vögel miteinander verbindet. Heute aber haben wir aus der statistischen Physik gelernt, dass eine kurzreichweitige Wechselwirkung zwischen benachbarten Teilchen durchaus unmittelbare langreichweitige Konsequenzen zwischen vielen haben kann. Im folgenden Kapitel werden wir näher darauf eingehen. Die inhärente, lokale Reichweite der Wechselwirkung zwischen einzelnen Teilchen und die daraus resultierende effektive, globale Reichweite sind absolut nicht gleich.
Abb. 4.2 Wendung eines Starenschwarms (nach Ballerini et al. 2008).
Aber kehren wir zunächst zurück zu den Staren in Rom. Sie wurden simultan von zwei Kameras fotografiert, die 25 m voneinander entfernt standen, mit 20 Bildern pro Sekunde. Bei den Aufnahmen war der Schwarm etwa 100 m von den Kameras entfernt, und es wurde jeweils minutenlang aufgenommen, mit dem Ziel, so eine fortlaufende dreidimensionale Darstellung aller Vögel im Raum zu erhalten. Bei einer sehr viel kleineren Zahl von Vögeln (um die zehn) hatte man so etwas früher schon mithilfe von menschlichen Auswertern versucht, aber stieß dann rasch an messtechnische Grenzen. Die römische Gruppe hatte da einen wesentlichen Vorteil: Sie verfügte über die Analysemethoden, die die Physiker zur Untersuchung von Teilchenerzeugung in hochenergetischen Kollisionen entwickelt hatten, Methoden die auf dem Einsatz von leistungsstarken Großrechnern basierten und bei denen die Messungen mithilfe von umfangreichen Algorithmen durchgeführt wurden. Durch diese Form der Untersuchung ließ sich das Problem tatsächlich weitgehend lösen. Es konnten Tausende von Vögeln identifiziert und vermessen werden, und das bedeutete einen echten Durchbruch in der Schwarmforschung.
Zunächst einmal konnte man die Größe und Form von Schwärmen festlegen. Diese waren nicht, wie es Beobachtern am Boden zunächst erschienen war, von blasenähnlicher, kugel- oder eiförmiger Struktur. Sie waren vielmehr wie dünne Pfannkuchen, die sich parallel zur Erdoberfläche bewegten. Eine weitere Ausdehnung nach oben erforderte einen Arbeitsaufwand gegen die Schwerkraft, und den versuchten die Teilnehmer soweit möglich zu umgehen. In dieser Ebene gab es sowohl breite als auch lange Schwärme, die ihre Form von der einen zur anderen wechselten. Im Gegensatz zu den Wendemanövern im Militär, bei denen die inneren Teilnehmer praktisch anhalten, während die äußeren rasch umwenden, bleibt im Vogelschwarm die Form erhalten, nur die einzelnen Vögel ändern ihre Richtung (Abb. 4.2). Etwas Ähnliches geschieht, wenn der Schwarm plötzlich nach oben oder nach unten umschwenkt. Man hatte also schon eine Vorstellung von der Bewegung des Schwarms als Ganzes. Wie aber bezieht sich diese auf die Bewegung der Einzelnen?
Dabei stellte man fest, dass für jeden Vogel das Wesentliche war, wie sich sein Nachbar verhielt. Nachbarn waren dabei zunächst die in der gleichen Ebene nebenan fliegenden Stare. Nach hinten konnten die Tiere sowieso nicht sehen, und auch nach vorne war ihre Sicht nicht so gut wie seitlich, da ihre Augen ja seitlich am Kopf liegen. Zudem hielt man nach vorne schon einfach deshalb Abstand, um nicht in Kollision zu geraten. Wenn man somit die Verteilung der Vögel im Schwarmquerschnitt ansah, ergab sich folgendes Bild: direkt um einen vorgegebenen Vogel entstand eine ovale Form, festgelegt durch die nächsten Nachbarn. Die Form strebte immer mehr auf eine Kugel zu, je mehr Nachbarn man hinzunahm. Man konnte somit bestimmen, mit wie vielen anderen Vögeln unser Untersuchungsobjekt in klarer, maßgeblicher Verbindung stand. Die Antwort war, so die STARFLAG-Sprecher Irene Giardina und Andrea Cavagna, „sieben“. Warum grade sieben? Ein möglicher Grund für diese Zahl wäre, dass Stare nur bis sieben zählen könnten. Doch auch wenn unser Star, nennen wir ihn Anton, nicht weiter zählen kann, wendet er mit, wenn die 100 weiter entfernten Artgenossen eine Wende einleiten. Wie kann das geschehen? Ist das doch noch die von Edmund Selous propagierte Telepathie?
Zudem war die Sache noch etwas komplizierter: Die so wichtigen nächsten Nachbarn von Anton waren keineswegs immer gleich weit von ihm entfernt. Wichtig ist nicht der absolute Abstand, sondern der relative, im Vergleich zu den anderen Abständen. Das wird eben dann besonders wichtig, wenn sich alle Größen ständig verändern. So ist auch dann der nächste Nachbar von Anton der, der ihm wirklich näher ist als alle anderen, unabhängig davon, wie groß der tatsächliche Abstand ist. Wir können uns also den Schwarm insgesamt wie ein Gebilde einzelner Knoten (die Vögel) vorstellen, die miteinander durch elastische Bänder verknüpft sind. Solche Strukturen sind seit mehr als 100 Jahren ein zentrales Forschungsthema der statistischen Physik, und deshalb werden wir uns im nächsten Kapitel diesem Bereich zuwenden. Hier aber sollten wir noch auf eine Frage hinweisen, zu der es bisher eigentlich keine Antwort in irgendeiner Form gibt.
Warum formieren sich die Stare allabendlich zu diesen Kunstflügen? Wir kennen keinen Grund dafür. Freuen sie sich einfach über ihr Dasein und einen gut überstandenen Tag? Die Schwarmbildung bei Fischen verringert wohl für jeden einzelnen die Gefahr, einem Raubtier zum Opfer zu fallen, und somit bleibt der Scharm bestehen. Auch Antilopenherden sind gemeinsam sicherer, da mehr Aufpasser da sind, und Insektenschwärme suchen gemeinsam nach Nahrung; so haben all diese anderen Schwärme irgendeine Funktion. Nur die Stare scheinen ihren gemeinsamen Gute-Nacht-Flug einfach zu genießen ...
Eine weitere interessante Größe ist die sogenannte Korrelationsreichweite im Schwarm. Wenn sich der Schwarm ausdehnt, gibt es eine Menge von nach rechts fliegenden Vögeln auf der rechten Seite und eine entsprechende nach links fliegende Menge auf der linken Seite. Das Gegenteil liegt vor, wenn der Schwarm sich zusammenzieht. Man kann also eine imaginäre Trennlinie durch den Schwarm ziehen, die die in sich korrelierten linken und rechten Mengen definiert (Abb. 4.3). Es zeigte sich nun, dass die so festgelegten „Korrelationsmengen“ mit zunehmender Schwarmgröße auch immer größer wurden: Je größer der Schwarm, desto mehr
Abb. 4.3 Korrelationsbereiche in einem Schwarm (nach Ballerini et al. 2008).
Vögel waren miteinander auf diese Weise korreliert, obwohl doch jeder Vogel nur mit seinen sieben nächsten Nachbarn in direkter Verbindung stand.
Eine dritte wichtige Messgröße für die Vogelschwärme ist die sogenannte Polarisation. Sie gibt die Flugrichtung des Schwarms an und ergibt sich, wenn man über die Flugrichtungen aller einzelnen Vögel mittelt. Wenn sich der Schwarm zum Fressen am Boden aufhält und jeder Vogel mal hier, mal dort etwas aufpickt, ist die Polarisation null – es gibt keine bevorzugt Richtung; Physiker sprechen dann von Rotationsinvarianz. Werden die Vögel plötzlich erschreckt, etwa durch einen lauten Knall, fliegen sie alle auf und davon in einer bestimmten Richtung: Die Polarisation hat jetzt einen endlichen, von null verschiedenen Wert. Wenn alle Vögel parallel zueinander fliegen, wird sie eins. Die spezielle Flugrichtung ist dabei unwichtig; a priori kann sie beliebig sein. Kritisch ist nur, dass alle die gleiche Richtung wählen. Physiker nennen das spontane Symmetriebrechung – spontan, weil niemand die Vögel in die gleiche Richtung zwingt und ihnen auch keine Richtung vorgibt.
Einen wesentlichen Aspekt der Schwarmbewegung haben wir schon angedeutet, wir wollen aber noch einmal darauf zurückkommen. Wenn der Schwarm wendet, betrifft das Vögel, die viel weiter voneinander entfernt sind als der Abstand, bei dem sie sich direkt beeinflussen, also sich tatsächlich sehen können. Das ist ja gerade, was die Schwarmbildung so faszinierend macht: Durch kurzreichweitige Signale zwischen je zwei benachbarten Vögeln wird ein viel langreichweitiger Effekt erzielt – der ganze Schwarm wendet. Diese Erscheinung, das Entstehen von globalen Effekten durch sehr lokale Auslöser, das ist vielleicht die Grundlage überhaupt für eine Schwarmtheorie.
Etwas ganz Ähnliches hat man auch in Säugetierherden beobachtet. In der Serengeti in Afrika ziehen jährlich riesige Gnuherden zwischen Sommer- und Winterweidegründen hin und her, Herden von bis zu 100 000 und mehr Tieren (Abb. 4.4). Diese Herden brechen auf breiter Front auf, nur entwickelt diese Front mit der Zeit eine Form von Wellenstruktur. Auch hier stehen nur wirklich benachbarte Tiere in direktem Kontakt miteinander, und trotzdem ist die Wellenlänge, der Abstand zwischen Berg und Tal der Wellen, sehr viel größer, wie man in Abb. 4.4 sieht.
Man hat festgestellt, dass ein solches Verhalten durch drei einfache „lokale“ Regeln erzeugt werden kann:
1 Jedes Tier beschleunigt oder verlangsamt seinen Gang, wenn sein Nachbar das tut.
2 Wenn ein Tier weiter als eine bestimmte Entfernung zurückfällt, holt es wieder auf.
3 Wenn ein Tier weiter als eine bestimmte Entfernung vorauseilt, bremst es wieder ab.
Abb. 4.4 Ziehende Gnuherde in der Serengeti (Sinclair 1977).
Diese Regeln reichen um die Wellenstruktur der Gnufront zu erzeugen. Irgendwelche Störungen veranlassen ein Tier, kurzfristig zu beschleunigen oder zurückzufallen. Bei Einhaltung der Regeln entsteht daraus dann die beobachtete Wellenstruktur – und die ergibt nicht etwa Variationen von der Größe der örtlichen, für das einzelne Tier maßgeblichen Änderungsentfernung, sondern viel größere Wellen. Deren Wellenlänge wird bestimmt durch die Dichte der Herde und ist wesentlich größer als die Sichtweite der Einzeltiere. Auch hier finden wir wieder, dass ein lokales, kurzreichweitiges Verhalten globale, langreichweitige Konsequenzen hat. Wir werden sehen, dass das nicht nur einen wesentlichen Aspekt der Schwarmbildung darstellt, sondern dass es auch ein grundlegendes Ergebnis in der statistischen Physik ist.