Читать книгу All sciences. №9, 2023. International Scientific Journal - Екатерина Александровна Селивёрстова, Ibratjon Xatamovich Aliyev, Екатерина Александровна Мулярчик (Буча) - Страница 10
PHYSICAL AND MATHEMATICAL SCIENCES
MECHANICAL INTERPRETATION OF THE PHENOMENON OF INTERFERENCE PATTERN FORMATION IN JUNG’S EXPERIMENT FOR THE THEORY OF WAVE-PARTICLE DUALISM
ОглавлениеUDC 577.332
Aliev Ibratjon Khatamovich
3rd year student of the Faculty of Mathematics and Computer Science of Ferghana State University
Ferghana State University, Ferghana, Uzbekistan
Annotation. The theory of wave-particle dualism is well-known today, along with many other theories aimed at explaining various types of phenomena. However, it is worth noting that until recently, the method of explaining the phenomena of wave-particle dualism in a more visual form, which appeared from Jung’s experiment, was questioned. The present study is aimed at presenting this model.
Keywords: particle-wave dualism, wave, particle-corpuscle, wave function, probability distribution, potential well, two-slit experiment.
Аннотация. Теория корпускулярно-волнового дуализма сегодня является общеизвестной, наряду с многими другими теориями, направленные на объяснение различных типов явлений. Однако, стоит отметить, что до последнего времени ставилось под вопрос метод объяснения в более наглядной форме явлений корпускулярно-волнового дуализма, появившаяся из эксперимента Юнга. На представление этой модели и направлено настоящее исследование.
Ключевые слова: корпускулярно-волновой дуализм, волна, частица-корпускула, волновая функция, вероятностное распределение, потенциальная яма, эксперимент с двумя щелями.
The so-called two-slit experiment is widely known, in which a stream of corpuscle particles was directed, as originally assumed, towards a plate with two thin slits, and a screen was located behind it. It was logical that after directing the flow of particles, initially photons from coherent laser radiation, two bands should have been observed on the screen, but instead the so-called interference pattern was observed on the screen. It consisted of a large number of bands with different sizes and brightness, while the maximum was determined in the middle.
Such a picture could only be obtained if the particle behaved like a wave, then it could form with itself and at the moments of opposite peaks extinguish each other, forming dark areas and in reverse positive moments, on the contrary, reinforcing each other, creating the above – described bands.
However, the corpuscular properties of particles are also highlighted, for example, in experiments with the photoelectric effect, it is the corpuscular nature of particles that acts. Based on the above, we had to conclude that particles are both waves and corpuscles, but how could this happen when it contradicted itself? In the quantum world, this was a reality, but for the macrocosm it still remained a mystery until the so-called dense «walking droplets» were used as an explanation.
This effect is formed when a medium-density liquid, for example oil, begins to vibrate and during the interaction of the liquid surface with a pointed object, it begins to divide into droplets, which immediately have to connect with the liquid, but this does not happen due to vibrations and they literally jump on the surface. Each of these drops is held under the influence of vibration, but moreover, such drops have the property of moving, because under the influence of vibrations they create standing waves that propagate across the surface, however, during the interaction of the drop with it, it begins to change its direction, which is why the effect of the movement of the drop is formed.
The present explanation can be applied to Jung’s experiment by directing the droplets towards two slits. It is worth clarifying before this that the drop itself expresses in this case a corpuscle-particle, when vibrations are the probabilistic nature of the existence of quantum objects – the particles under study in the person of photons, electrons, ions and others. When a particle begins to move towards the slit, its wave, which begins to oscillate at the level of spacetime, due to the vibrational nature of the particle – the variable probability of its being at a specific point, since its movement is discrete, according to the tunneling effect, begins to interact with the particle itself.
So, when it approaches the gap, it passes through one of the slits, when its wave passes through both, as a result of which, after passing through the barrier, the particle begins to interact with the formed wave, changing its trajectory. Thus, one can clearly see how the interference pattern is formed using the example of explaining Young’s experiment with two slits by means of jumping droplets.
In addition, during the explanation of the experiment, the concept of tunneling was demonstrated, which can also be represented by jumping droplets. The fact is that any space, according to the quantum vacuum model, has an infinite number of particles that are immediately born, annihilate with each other, disappear, etc., that is, according to the quantum vacuum model, there is practically no particle – free space, from which it can be concluded that in order for a particle to be able to overcome no matter how small the distance, it needs energy through which it could overcome this distance, but it also happens that a particle overcomes the same distance without practically losing energy, which is called tunneling.
In this case, there is a barrier in front of the particle that is moving, which it must overcome by making a certain leap through it, but without expending energy to overcome it. Surprisingly, this effect can also be represented in the form of a drip model, according to which, if a certain wall is placed in front of a drop, then each time it will try to jump over it, but it will not work, however, at a certain moment, interaction with its own standing wave may be sufficient to obtain additional energy and to overcome the barrier. In such a phenomenon, the probability is surprisingly determined in the macrocosm in the same way as it is determined in the quantum measurement and description of the phenomenon of quantum tunneling of particles.
Moreover, the generality of the described phenomena for a wide variety of particles, from elementary particles to ions, is important, which in a sense makes the droplet model of demonstration almost universal. However, a large number of phenomena still remain unexplained, which means that not a few works should be done on the basis of available data and the drip model, as one of the most progressive analogies, will have to overcome quite a few tests on the way to achieving the goals set.
The literature used
1. Boyarkin, O. M. Particle Physics – 2013: Quantum electrodynamics and the Standard Model / O. M. Boyarkin, G. G. Boyarkina. – M.: CD Librocom, 2015. – 440 p.
2. Boyarkin, O. M. Particle Physics – 2013: from electron to Higgs boson. Quantum theory of free fields / O. M. Boyarkin, G. G. Boyarkina. – M.: Lenand, 2018. – 296 p.
3. Boyarkin, O. M. Particle physics – 2013: Quantum electrodynamics and the Standard model / O. M. Boyarkin, G. G. Boyarkina. – M.: CD Librocom, 2016. – 440 p..
4. Voronov, V. K. Physics at the turn of the millennium: Physics of self-organizing and ordered systems. New objects of atomic and nuclear physics. Quantum information / V. K. Voronov, A.V. Podoplelov. – M.: KomKniga, 2014. – 512 p.
5. Gribbin, J. In search of Schrodinger’s cat. Quantum physics and reality / J. Gribbin. – M.: Ripoll-classic, 2019. – 352 p.
6. Zhuravlev, A. I. Quantum biophysics of animals and humans: A textbook / A. I. Zhuravlev. – M.: Binom. Laboratory of Knowledge, 2011. – 398 p.
7. Irodov, I. E. Quantum physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom, 2014. – 256 p.
8. Irodov, I. E. Quantum Physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2010. 256 p.
9. Irodov, I. E. Quantum Physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2004. – 272 p.
10. Irodov, I. E. Quantum physics. Basic laws / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2010. – 256 p.
11. Irodov, I. E. Quantum physics. Basic laws: A textbook for universities / I. E. Irodov. – M.: Binom. LZ, 2013. – 256 p.
12. Kamalov, T. F. Physics of non – inertial reference systems and quantum mechanics / T. F. Kamalov. – M.: KD Librocom, 2017. – 116 p.
13. Karmanov, M. V. Course of general physics. Vol. 3. Quantum optics. Atomic physics. Solid state physics In 4 tt T: 3 / M. V. Karmanov. – M.: KnoRus, 2012. – 384 p.
14. Kvasnikov, I. A. Thermodynamics and statistical physics. Vol. 4. Quantum statistics: Textbook / I. A. Kvasnikov. – M.: KomKniga, 2010. – 352 p.
15. Kvasnikov, I. A. Thermodynamics and statistical physics: Vol. 4: Quantum statistics / I. A. Kvasnikov. – M.: Lenand, 2017. – 352 p.
16. Kvasnikov, I. A. Thermodynamics and statistical physics. Vol. 4: Quantum statistics / I. A. Kvasnikov. – M.: KomKniga, 2014. – 352 p.