Читать книгу Data Science для карьериста - Жаклин Нолис - Страница 17

Часть 1
Data Science. С чего начать
1. Что такое Data Science?
1.2. Различные типы вакансий в Data Science
1.2.4. Смежные специальности

Оглавление

Хотя три специализации, о которых мы писали в предыдущих разделах, – это основа работы в Data Science, также бывает несколько других отдельных должностей, которые выходят за рамки этих категорий. Мы перечислим их здесь, потому что разбираться в существующих направлениях полезно и, возможно, вам предстоит сотрудничество с такими специалистами. Тем не менее если вы бы хотели заниматься чем-то из нижеописанного, эта книга может быть для вас менее актуальной.


Бизнес-аналитик

Бизнес-аналитик занимается чем-то похожим на работу аналитика, но, как правило, использует меньше статистических знаний и навыков программирования. Его инструментом, вероятнее всего, будет Excel, а не Python, и он может вообще не создавать статистические модели. Хотя его функция аналогична функции аналитика, он выдает менее сложные результаты, поскольку используемые им программные средства и методы ограничены.

Если вы хотите заниматься машинным обучением, программированием или применением статистических методов, должность бизнес-аналитика может вас разочаровать, потому что не даст вам этих навыков. Кроме того, эта работа обычно оплачивается хуже, чем должности в Data Science, и считается менее престижной. Но она может стать хорошим стартом на пути к DS, особенно если у вас нет опыта работы с данными в бизнес-среде. Если вы хотите начать с роли бизнес-аналитика и вырасти до дата-сайентиста, ищите вакансии, где говорится о возможности получить необходимые для вас навыки, например в программировании на R или Python.


Инженер данных

Инженер данных занимается хранением данных в БД и обеспечением доступа к ним. Он не составляет отчеты, не проводит анализ и не разрабатывает модели; вместо этого он аккуратно хранит и форматирует данные в хорошо структурированных базах для других специалистов. Инженеру данных могут поручить хранение записей о клиентах в крупномасштабной облачной базе и добавление в нее новых таблиц по запросу.

Инженеры данных существенно отличаются от дата-сайентистов – они даже более редкие и востребованные специалисты. Такой сотрудник может помочь создать серверные компоненты данных внутренней экспериментальной системы компании и обновить поток обработки данных, когда задачи начинают занимать слишком много времени. Другие специалисты разрабатывают и отслеживают пакетные среды и потоковую передачу, управляя данными на всех этапах от сбора до обработки и хранения.

Если вас интересует инженерия данных, вам потребуются глубокие знания в области информатики; многие инженеры данных – это бывшие инженеры-программисты.

Вики Бойкис (Vicki Boykis): дано ли каждому стать дата-сайентистом?

Учитывая весь оптимизм (и большие потенциальные зарплаты, о которых пишут в новостях) в отношении Data Science, легко понять, почему эта сфера дает привлекательные возможности для карьерного роста, особенно если учесть, что диапазон и количество должностей в DS продолжают расти. Однако начинающему специалисту важно иметь реалистичное и детальное представление о том, как будет развиваться рынок Data Science в ближайшую пару лет, и в соответствии с этим корректировать свои решения.

Сегодня на сферу науки о данных влияет несколько основных тенденций. Во-первых, Data Science как область знаний существует уже десять лет и за это время прошла через ранние стадии цикла хайпа: ажиотаж в СМИ, быстрое внедрение и консолидация. Вокруг DS было много шума, ее обсуждали в медиапространстве, внедряли компании Кремниевой долины и не только, и сейчас мы находимся на этапе быстрого развития области в крупных компаниях и стандартизации таких программных средств обработки данных, как Spark и AutoML.

Во-вторых, в результате быстрого развития отрасли возник избыток новых специалистов, пришедших после изучения новых программ в университетах, буткемпах или на онлайн-курсах. Число кандидатов на любую должность в области Data Science, особенно на начальном уровне, выросло с 20 человек на место до 100 или более. Теперь нередко можно увидеть даже 500 резюме на одну вакансию.

В-третьих, стандартизация наборов программных средств, обеспеченность рабочей силой и спрос на специалистов с опытом работы привели к изменениям в порядке распределения рабочих мест и к созданию иерархии должностей и функциональных обязанностей в Data Science. Например, в одной компании дата-сайентист может заниматься созданием моделей, а в другой – главным образом выполнением анализа SQL, что соответствует, скорее, должности аналитика.

Для тех, кто хочет прийти в Data Science с нуля, это означает несколько вещей. Во-первых, и это самое важное, они увидят, что рынок труда наполнен конкурентами. Особенно это касается тех, кто, в принципе, только начинает работать (например, выпускников колледжей), либо тех, кто пришел в отрасль из какой-либо другой сферы и конкурирует за место с тысячами таких же соискателей. Во-вторых, они могут претендовать на вакансии, которые не совсем соответствуют тому образу Data Science, который создается в СМИ, будто это исключительно написание и внедрение алгоритмов.

Учитывая эти тенденции, важно понимать, что изначально может быть непросто выделиться среди других кандидатов и попасть на финальный этап собеседования. И хотя стратегии, приведенные в этой книге, могут показаться сложными, они помогут вам привлечь внимание, а это необходимо в сложившихся условиях высокой конкуренции.

Инженер-исследователь

Ученый-исследователь разрабатывает и внедряет новые программные средства, алгоритмы и методологии, которые часто используются другими дата-сайентистами в компании. Такие должности почти всегда требуют наличия кандидатской степени, обычно в области информатики, статистики, количественных социальных наук или в смежных направлениях. Ученому-исследователю может потребоваться несколько недель, чтобы изучить и испытать методы повышения эффективности онлайн-экспериментов, повысить точность распознавания изображений в беспилотных автомобилях на 1 % или создать новый алгоритм глубокого обучения. Он даже может тратить время на написание исследовательских работ, которые будут редко использоваться в компании, но помогут поднять ее престиж и (в идеале) продвинуться в этой области. Поскольку эти должности требуют очень специфического опыта, мы не будем уделять им особого внимания в этой книге.

Data Science для карьериста

Подняться наверх