Читать книгу Data Science для карьериста - Жаклин Нолис - Страница 24

Часть 1
Data Science. С чего начать
2. Типы компаний в Data Science
2.3. Seg-Metra: стартап на ранней стадии

Оглавление

• Похожа на: тысячи неудачных стартапов, о которых вы даже не слышали.

• Возраст компании: 3 года.

• Количество сотрудников: 50.

Seg-Metra – молодая компания, чей продукт помогает клиентам оптимизировать веб-сайты с помощью кастомизации уникальных сегментов плкупателей. В начале своей короткой истории Seg-Metra привлекла нескольких известных клиентов к использованию своих технологий и благодаря этому смогла получить больше финансирования от венчурных капиталистов. Теперь, имея миллионы долларов, компания хочет быстро увеличить размеры и улучшить продукт.

Самое крупное усовершенствование, которое основатели компании предлагали инвесторам, – добавление в продукт базовых методов машинного обучения, что было представлено как «передовой ИИ». Получив новое финансирование, основатели компании ищут инженеров МО для реализации задуманного. Им также нужны специалисты по принятию решений для составления отчетности об использовании продукта, чтобы лучше понять, как его оптимизировать.

2.3.1. Команда (какая еще команда?)

Новый дата-сайентист вполне может оказаться первым в компании. Или же стать одним из первых и подчиняться, скорее всего, тому, кого взяли раньше всех. Поскольку команда новая, протоколов практически не будет – никаких устоявшихся языков программирования, практик, способов хранения кода или официальных совещаний.

Именно тот дата-сайентист, которого взяли первым, будет отдавать все распоряжения. Скорее всего, культура команды будет зависеть от его личностных качеств. Если этот человек открыт для обсуждения и доверяет другим членам команды, то они смогут принимать решения вместе, например обсуждать, какой язык использовать. Если этот человек привык все контролировать и не готов прислушиваться к мнению других, он будет принимать такие решения самостоятельно.

В такой неструктурированной среде может вырасти очень сплоченный коллектив. Команда Data Science всеми силами пытается заставить работать новые технологии, методы и программные средства, и в результате формируются глубокие связи и дружба. С другой стороны, те, у кого нет власти, могут испытывать огромное эмоциональное насилие со стороны руководства, а поскольку компания небольшая, никто не понесет за это ответственности. Независимо от того, как именно будет развиваться компания Seg-Metra, специалистов по работе с данными здесь ждет непростое время.

Работа команды может захватывать или раздражать – каждый день по-разному. Часто дата-сайентисты проводят анализ впервые, например делают первую попытку использовать данные о покупках для сегментации клиентов или развертывают первую нейронную сеть. Аналитические и инженерные задачи, которые решаются впервые, захватывают дух, ведь это неизведанная территория внутри компании, а специалисты по работе с данными становятся первопроходцами. Иногда работа может быть изнурительной, например когда уже пора предоставить инвестору готовую демоверсию, а модель все еще не сходится. Даже если у компании есть данные, сама инфраструктура может быть настолько запутана, что их просто невозможно использовать. Несмотря на хаотичность работы, выполнение всех этих задач в Seg-Metra помогает дата-сайентистам очень быстро освоить множество навыков.

2.3.2. Технология: передовые методы, собранные воедино

Поскольку Seg-Metra – молодая компания, ей не приходится поддерживать устаревшие технологии. Кроме того, хочется произвести впечатление на инвесторов, а сделать это гораздо проще, когда располагаешь эффектным стеком технологий. Поэтому Seg-Metra использует самые современные и лучшие методы разработки ПО, хранения и сбора данных, а также анализа и отчетности. Информация хранится в современных облачных сервисах: локально ничего не делается. Дата-сайентисты подключаются напрямую к этим базам и создают модели нейронных сетей МО на крупных экземплярах виртуальных машин Amazon Web Services (AWS) с обработкой графическим процессором. Эти модели развертываются с помощью современных методов программной инженерии.

Data Science для карьериста

Подняться наверх