Читать книгу Kvantefilosofi - Jan Faye - Страница 9

FARVEL TIL DEN KLASSISKE FYSIK

Оглавление

Hvordan var det helt præcist, at Bohrs model var uforenelig med den klassiske fysik? Tænker vi på den klassiske fysik som den fysik, der bygger på de ontologiske principper, vi omtalte tidligere, så synes Bohrs atommodel at udfordre årsagsprincippet, determinismeprincippet og kontinuitetsprincippet.

Der findes for det første ingen ydre årsager til, at elektronen hopper fra en bane til en anden. Processen opstår spontant. Den samme spontanitet finder man ved radioaktiv stråling. Også her dannes alfa-, beta- og gammastrålingen uden egentlig grund, i den forstand at årsagen og tidspunktet for henfaldet af den enkelte kerne er ganske ubestemt. Hvis det er rigtigt, så er ikke alle hændelser forårsaget af andre hændelser. Nogle forekommer spontant og tilfældigt. Det er samtidig mærkeligt, at sådanne tilfældige hændelser fremkommer på regelmæssig facon, så man kan opstille en statistisk lov for deres kollektive optræden. Eksempelvis kan man anføre, hvornår halvdelen af en mængde af en bestemt slags atomer er omdannet til andre slags atomer. Hvordan kan enkeltvis helt tilfældige hændelser optræde regelmæssigt i flok? Det kunne tyde på, at der kunne være indre årsager hertil. Men ingen har været i stand til at identificere dem.

Determinismeprincippet befinder sig også i vanskeligheder. Antag, at elektronen i brintatomet er i en ydre bane. Det kunne være banen (hovedkvantetallet) fire. Herfra kan den springe til bane tre eller uden stop til bane to eller direkte til bane et. Hvis et kvantespring var determineret, måtte det være sådan, at elektronens tilstand i bane fire (som jo ifølge Bohr var en klassisk tilstand) ville fastlægge, hvilken af de tre mulige baner elektronen ville hoppe til. Men vi kender jo ikke den nøjagtige mekaniske tilstand, men kun energien og impulsmomentet. Og selvom vi gjorde, må den samme banetilstand i princippet kunne efterfølges af tre forskellige banetilstande, da ingen har kunnet vise virksomheden af indre kræfter. Igen er vi på herrens mark. Derimod kan vi sige, såfremt elektronen befinder sig i bane fire, at der er én given sandsynlighed for, at den springer til tre, en anden for, at den flytter sig direkte til to, og en tredje for, at den med det samme dukker op i bane et.

Einstein, som jo nogle år tidligere havde vist, at man netop kan forklare den fotoelektriske effekt ud fra en antagelse om, at lys består af fotoner, undrede sig over, i hvilken retning fotonen blev udsendt fra atomet. Havde lysudsendelsen været en klassisk proces, måtte fotonens retning være bestemt af elektronens banetilstand og eventuelle kræfter, der virkede på systemet. Einsteins fotoner passede ikke rigtig med Bohrs antagelse, at den elektromagnetiske stråling fra elektronen var kontinuerlige bølger. Men havde Einstein ret, hvad han jo havde, var det ikke blot elektronens kvantespring, der skete spontant, men også fotonens kurs væk fra elektronen.

Også Rutherford havde undrende bemærkninger til Bohrs model. For når en elektron hopper fra en bane til en anden, synes den på forhånd at måtte kende til den bane, den ender med at være i. For frekvensen af den stråling, som elektronen udsender, er bestemt af energiforskellen mellem de to baner. Det kunne man måske forklare med, at elektronen først udsender stråling, når den er landet i sin nye bane. Men det vil stride mod kontinuitetsprincippet i den klassiske fysik, idet strålingen udsendes, mens elektronen bevæger sig fra et sted i rummet til et andet. Og hvis energiudsendelsen første skete, efter at elektronen var ankommet til den nye bane, så måtte den på en eller anden måde ‘huske’ den bane, den kom fra.

Kvantespringet strider altså også mod kontinuitetsprincippet. Elektronen flytter sig fra en ydre til en indre bane i en diskontinuerlig proces. Den kan ikke opholde sig i rummet undervejs, flytningen tager ikke tid, og dens energi formindskes i adskilte størrelser. Elektronen, der springer fra en energitilstand til en anden, følger ikke nogen vej i rum og tid. Hvordan, ligger uden for vores anskuelsesevner. Vores evner til at anskue ting er nemlig tilpasset makroskopiske genstande, som vi kan følge med øjnene i rum og tid.

Fysikken brød for alvor med de klassiske principper. Opdagelsen af virkningskvantet skabte begyndelsen til en ny videnskabelig revolution. Den gamle kvanteteori var radikal, men ikke radikal nok. Man kan sige det kort: Bohrs atommodel led skibbrud, fordi Bohr havde forestillet sig, at elektronen i en stationær tilstand bevægede sig i en kontinuerlig bane omkring kernen, at den altid havde en bestemt impuls, at den altid kunne lokaliseres til et bestemt sted, og at en forudgående bevægelsestilstand altid fastlagde den efterfølgende bevægelsestilstand, så længe den forblev i sin faste bane. Denne semiklassiske tankegang måtte desværre opgives. Men det skulle blive andre end Bohr, der fandt en tilfredsstillende løsning.

Kvantefilosofi

Подняться наверх