Читать книгу Nano-Technological Intervention in Agricultural Productivity - Javid A. Parray - Страница 49

2.2 Nanotechnology and Agriculture

Оглавление

There is great interest in nanotechnology's potential advantages in farming to improve agricultural production with little energy and expenditure inputs. The significant possible applications under nanoparticles in the farm sector were nanosensor systems, nanopesticides and nanofertilizers, and smart agrochemicals supply systems [49]. Besides, plant breeding and genetic engineering devices based on the nanotechniques [50] are also used. The development of nanotechnological approaches for farming, especially crop productivity and disease management, was encouraged [51]. Pesticide encapsulation of nanoparticles for continuous release, nanoparticles mediated by genetics for crop improvement, carbon nanoparticles supported by rain‐fed seed germination plants, nanofertilizers for improved crop nutrition and crop productivity, and nanopesticide management of plant diseases; De La Torre‐Roche et al. [52] indicates a decrease in the use of plant pesticides in combination with nanomaterials. This result demonstrates how these interactions benefit from reducing the residues of pesticides in plants and other parts.

In an age when increased supply for sustainability is bound to minimize the price and overuse of agricultural and natural resources, nanotechnology offers the possibility of precision cultivation [36]. However, considering the promising results achieved through the involvement in agriculture of advanced nanotechnologies, their importance to the market has not yet been reached [53]. Furthermore, fluctuating suspicions regarding the outcome, transport, bioavailability, and toxicity of NPs restrict the full acceptance and readiness of agricultural nanotechniques.

Consequently, nanotechnology provides a precise capacity to revitalize the agricultural industry. It is worth noting at the same time; nevertheless, that specific contribution to agriculture still is unclear and increasing. Therefore, a system‐level approach is essential to provide more precise information about the exposure of nanoparticles and their risk in agricultural systems. In the future, deciding factors are future guidance for improved forestry nanoparticle science, which will focus on optimizing the safe use of nanoparticles at an appropriate level of farming gain in modulating fate, actions, bioavailability, and toxicity.

Nano-Technological Intervention in Agricultural Productivity

Подняться наверх