Читать книгу Mapeo de la biomasa aérea de los bosques mediante datos de sensores remotos y R - José Luis Hernández Stefanoni - Страница 9

1.2 Estimación de la distribución espacial de la biomasa área

Оглавление

La estimación de la distribución espacial de la biomasa aérea del bosque es importante para cuantificar el papel que tienen los bosques como almacenes de carbono. Esta información es crucial para apoyar la conservación y el manejo de los bosques y mantener las reservas de carbono, debido a que el conocimiento sobre las existencias y flujos de carbono es esencial para comprender la condición actual y el curso que tendrá el ciclo del carbono ante los cambios en el uso del suelo y otros disturbios (Thomson et al., 2010).

Los métodos para estimar la biomasa aérea de los bosques están basados en datos de campo; sin embargo, la estimación de la biomasa usando exclusivamente estos datos tiene dificultades logísticas, involucra costos altos y no describe la distribución de esta variable en el espacio. La percepción remota ofrece una fuente viable de información auxiliar para evaluar la biomasa aérea de los bosques, ya que brinda un medio económico para lograr una cobertura espacial completa de información en áreas grandes y con intervalos de tiempo regulares (Lu et al., 2016). De igual manera, pueden utilizarse variables ambientales distribuidas de manera continua en el espacio para la estimación de la biomasa. Varios estudios han encontrado que la biomasa se ve afectada por variables climáticas; como ejemplo se ha demostrado que la variación de la temperatura y la precipitación influye en la biomasa (Keith et al., 2009). Por lo tanto, se han utilizado variables climáticas (Hernández-Stefanoni et al., 2020) además de variables topográficas (Cartus et al., 2014) en conjunto con datos de imágenes de satélite para el mapeo de la biomasa área de los bosques.

Un método común para estimar la biomasa área es construir mapas de clases de la cobertura del suelo o tipos de vegetación a partir de imágenes de satélite. Estos mapas se utilizan para predecir la biomasa aérea en función de los valores medios de esta variable dentro de cada tipo de vegetación. A pesar de su aplicabilidad general y la utilidad de este enfoque, se debe reconocer que tiene una simplificación excesiva, derivada de tener un valor medio único que predice todos los puntos no medidos dentro de cada tipo de vegetación, es decir, se ignora la variabilidad dentro de cada tipo de vegetación (Burrough, 2001). Un enfoque alternativo que aborda estas deficiencias es el uso de datos de imágenes de satélite para medir parámetros o extraer variables de percepción remota y construir modelos que relacionen la biomasa áerea estimada en campo con las variables extraídas de las imágenes, lo cual permite desarrollar mapas continuos de esta variable (Cartus et al., 2014; Hernández-Stefanoni et al., 2020; Rodríguez-Veiga et al., 2019).

La estimación de la distribución espacial de la biomasa aérea del bosque incluye varias etapas, las cuales pueden observarse en la figura 1. En la primera etapa se realiza la estimación de la biomasa aérea en campo. La biomasa del bosque no se mide en campo, más bien, se estima, por lo que se requiere recolectar información de un número suficiente de parcelas, para medir el diámetro y la altura, así como identificar a nivel de especie cada uno de los árboles dentro de las parcelas. Adicionalmente, a la información se agrega la densidad de la madera para cada especie. Posteriormente, con estos datos y el uso de ecuaciones alométricas se estima la biomasa de cada árbol. Finalmente, la suma de la biomasa de todos los individuos dentro de una parcela brinda una estimación de la biomasa aérea por unidad de superfice de la parcela.

Las ecuaciones alométricas para estimar la biomasa a nivel de árbol se obtienen mediante muestreos destructivos y el ajuste de modelos de regresión lineales o no lineales. Estas ecuaciones estiman la biomasa total para árboles individuales y combinan el diámetro a la altura del pecho y la altura; además, en algunos se incluye la densidad de la madera como variable predictora (Urquiza-Haas et al., 2007; Chave et al., 2014; Ramírez et al., 2019). Sin embargo, las relaciones entre la altura y el diámetro de los árboles varían considerablemente entre y dentro de las especies, así como en relación con el clima y la estructura de la vegetación (Banin et al., 2012; Hulshof et al., 2015). Por otro lado, la densidad de la madera rara vez se mide dentro de los inventarios forestales, a pesar de que la biomasa de cada árbol es directamente proporcional a la densidad de la madera, la cual, además, presenta variaciones entre especies de árboles y entre individuos de la misma especie (Bastin et al., 2015). Por lo tanto, la precisión en la estimación de la biomasa de árboles individuales depende de las ecuaciones alométricas utilizadas (Molto et al., 2013).

La segunda etapa para la estimación de la distribución espacial de la biomasa tiene que ver con el procesamiento de las imágenes de satélite. Aquí el objetivo es generar variables derivadas de los datos de percepción remota, que se relacionen con la biomasa aérea del bosque y que puedan ser utilizadas en la construcción de modelos para predecir la biomasa.

Los valores de reflectancia y los índices de vegetación derivados de imágenes ópticas de satélites han sido utilizados para estimar la biomasa en los bosques (Foody et al., 2003). Diversos estudios muestran que se pueden obtener estimaciones de la biomasa, tanto para bosques templados, como tropicales, a escalas espaciales locales, regionales y globales (Saatchi et al., 2011; Cartus et al., 2014; Rodríguez-Veiga et al., 2019; Hernández-Stefanoni et al., 2020). Sin embargo, una limitación importante de las imágenes ópticas es que los índices de vegetación como el NDVI (“Normalized Difference Vegetation Index”) tienden a saturarse en áreas con vegetación densa (Lu et al., 2012). Una manera de solucionar este problema es a través del uso de imágenes de alta resolución (resolución <10 m, tales como RapidEye, Quickbird e Iconos, entre otras). Este tipo de imágenes ofrece información más detallada de la estructura de la vegetación en comparación con imágenes de resolución media y alta (resolución >10 m como Spot, Sentinel 2, Landsat, etc.) y, a su vez, permite discriminar entre el dosel del bosque y las aperturas en este, así como distinguir el espacio entre árboles y otros atributos de la vegetación, lo que posibilita el uso de texturas de las imágenes para la estimación de la biomasa (Ploton et al., 2017).

Los datos del radar de apertura sintética (SAR, por sus siglas en inglés) también se han utilizado con éxito para mapear la biomasa (Hernández-Stefanoni et al., 2020). Los instrumentos SAR de longitud de onda moderada de 15 a 30 cm pueden penetrar el dosel del bosque interactuando con tallos y ramas, donde se almacena la mayor parte de la biomasa (Joshi et al., 2017). Por lo tanto, la intensidad de la señal de retrodispersión del radar se relaciona con la biomasa del bosque; sin embargo, las relaciones entre la intensidad de la retrodispersión del radar y la biomasa también pueden saturarse (Joshi et al., 2017). Por otro lado, los bosques exhiben una heterogeneidad a escala de paisaje, provocada por los cambios en el uso de la tierra, lo cual genera un mosaico de parches de bosques de diferentes edades. Estas variaciones en la estructura de la vegetación pueden caracterizarse usando la textura de las imágenes SAR de resolución media (resolución de 25 m) y con ello superar o minimizar los problemas de saturación (Huang et al., 2019; Zhao et al., 2016; Thapa et al., 2015).

Por último, un enfoque muy eficaz para estimar la biomasa del bosque es mediante el uso de datos LiDAR (Light Detection and Ranging). LiDAR es un sensor activo que puede adquirir directamente la estructura vertical de la vegetación, debido a que tiene la capacidad de penetrar el dosel del bosque (Lefsky et al., 2001). En consecuencia, LiDAR puede proporcionar una vista tridimensional de la estructura del bosque en una nube de puntos, lo que permite estimar la biomasa con mayor precisión que las imágenes ópticas (Lefsky et al., 2001; Hernández-Stefanoni et al., 2014). LiDAR permite obtener estimaciones muy precisas de diferentes atributos de la vegetación (altura, área basal y biomasa) usando métricas de altura y densidad de puntos (Hernández-Stefanoni et al., 2014).

La tercera etapa tiene que ver con la construcción de modelos de predicción de la biomasa. Estos modelos se desarrollan pensando en relacionar la variable dependiente (es decir, la biomasa aérea) con una serie de variables independientes (derivadas de datos de las imágenes de satélite). Para ello, se pueden utilizar modelos de regresión lineal simple o múltiple; sin embargo, la biomasa suele estar relacionada de forma no lineal con las variables derivadas de las imágenes de satélite, de modo que también se han utilizado modelos no lineales. Por otra parte, como las relaciones entre la biomasa y las variables independientes son a menudo muy complejas, se han utilizado asimismo algoritmos no paramétricos para estimar la biomasa, entre los que se incluyen el vecino más cercano (K-NN), redes neuronales artificiales (ANN), bosque aleatorio (Random Forest), máquinas de soporte de vectores (SVM), entre otros. Un aspecto importante durante la construcción de los modelos de predicción de la biomasa consiste en evaluar la confiabilidad de los modelos y la precisión de las estimaciones de la biomasa. Para ello se requiere una evaluación de la precisión de la predicción de la biomasa a través de un proceso de validación.

En la última etapa, se utilizan los modelos de predicción construidos junto con las variables predictoras derivadas de las imágenes de satélite, para obtener la distribución espacial de la biomasa aérea estimada en el área de estudio. Los mapas con la distribución espacial de la biomasa se construyen al aplicar el modelo de predicción al conjunto de capas que representan las variables de las imágenes.

Figura 1. Etapas para la estimación de la distribución espacial de la biomasa aérea de los bosques usando percepción remota

Mapeo de la biomasa aérea de los bosques mediante datos de sensores remotos y R

Подняться наверх