Читать книгу Imagery and GIS - Kass Green - Страница 77

Unmanned Aerial Systems

Оглавление

For the first time since the advent of remote sensing, technologies are available that allow anyone to collect imagery. UASs (sometimes called drones) have long been recognized for their potential as a means of accomplishing tasks that are too repetitive, inaccessible, or dangerous for manned aircraft. The military implications of such a device are obvious, and most development has occurred in the military as a result. However, in the last decade or so, the use of UASs for civilian purposes has grown tremendously. The proliferation of better and more effective software for processing imagery coupled with the miniaturization of sensors has allowed UASs to successfully collect remotely sensed data for a very large number of applications.

Today, virtually any sensor from cameras, video, multispectral and hyperspectral sensors, thermal imagers, radar, lidar, and others can be flown on a UAS. Some of these platforms are fixed-wing aircraft but many more are some type of helicopter, often with four, six, or eight propellers. These platforms can be small enough to fit in your hand or large enough to carry a substantial payload of sensors and equipment. Software for processing this data is available both commercially and in the public domain to create mosaicked images, thematic maps, topographic data, and other cartographic output. Esri has developed Drone2Map for the creation of professional imagery products from UAS-captured still imagery for visualization and analysis in ArcGIS.

UASs are making the collection of ultrahigh-resolution imagery a reality for small geographic study areas. The software allows users to process the data into custom products, often in the same day. For the first time, UASs are offering the promise of making remote sensing technology personal, in much the same way that PCs made computers personal.

Many companies now sell small UASs (sUASs) at reasonable costs that allow farmers, ranchers, environmentalists, researchers, utility companies, academics, and others to take advantage of this rapidly growing technology. Federal agencies from the United States and many other countries fly large UASs with heavy payloads for extended missions of both military importance and civilian usefulness. However, the growth in this technology is primarily in smaller UASs that fly short missions with small payloads. The list of applications for such remotely sensed data is endless and includes archaeology, engineering, wildlife habitat analysis, agricultural mapping, forest inventory, disaster monitoring, road and bridge inspection, and many, many more.

Perhaps the biggest stumbling block for the use of UASs today is the regulations surrounding their use. Many countries have modernized their regulations, clearly separating the use of manned versus unmanned systems, especially for sUASs. The United States has lagged behind in this adjustment and therefore is behind many countries in the use and development of this technology. New regulations for sUASs were recently published by the FAA (https://www.faa.gov/uas/media/Part_107_Summary.pdf).

Imagery and GIS

Подняться наверх