Читать книгу Максимизация производительности: Алгоритмы для оптимизации системы. Оптимизация системы компьютера - - Страница 16
Оптимизация системы: Алгоритмы для достижения эффективности и производительности
Алгоритм генетического алгоритма для оптимизации значений параметров
Оглавление– Входные данные: значения CPU %, RAM %, HDD % и Network Load.
– Генерация начальной популяции, состоящей из случайных комбинаций значений параметров.
– Определить функцию приспособленности (fitness function), основанную на общей нагрузке системы по заданной формуле.
– Начало цикла генетического алгоритма:
– Выбрать особи для скрещивания на основе их приспособленности (низкие значения общей нагрузки имеют более высокую вероятность выбора).
– Выполнить операции скрещивания (кроссовера) и мутации для создания новых потомков.
– Оценить приспособленность новых потомков.
– Заменить часть популяции на потомков, которые имеют более высокую приспособленность.
– Конец цикла генетического алгоритма.
– Вывести оптимальные значения параметров, соответствующие особи с наивысшей приспособленностью (наименьшей общей нагрузке).