Читать книгу Максимизация производительности: Алгоритмы для оптимизации системы. Оптимизация системы компьютера - - Страница 9
Оптимизация системы: Алгоритмы для достижения эффективности и производительности
Алгоритм адаптивной оптимизации Монте-Карло для оптимизации значений параметров
Оглавление– Входные данные: значения CPU %, RAM %, HDD % и Network Load.
– Инициализировать начальные значения параметров случайным образом.
– Задать начальный размер шага (step size) для обновления значений параметров.
– Начать цикл оптимизации:
– Вычислить общую нагрузку системы с текущими значениями параметров по заданной формуле.
– Случайным образом изменить значения параметров с использованием случайных приращений в пределах заданного размера шага.
– Вычислить новую общую нагрузку системы с обновленными значениями параметров.
– Сравнить новую общую нагрузку со старой общей нагрузкой и принять решение об обновлении значений параметров:
– Если новая нагрузка меньше старой, принять новые значения параметров и уменьшить размер шага (чтобы уточнить поиск).
– Если новая нагрузка больше или равна старой, принять новые значения параметров с вероятностью, зависящей от разности в нагрузке и увеличить размер шага (чтобы увеличить поиск).
– Повторять шаги 3—5 до достижения требуемого числа итераций или до удовлетворения других критериев остановки.
– Вывести оптимальные значения параметров, соответствующие минимальной общей нагрузке системы.
Примечание: Алгоритм адаптивной оптимизации Монте-Карло комбинирует случайные изменения значений параметров и адаптивную стратегию обновления шага для более эффективного поиска оптимальных значений. Выбор размера шага и других параметров алгоритма может варьироваться в зависимости от требований и характеристик задачи.