Читать книгу Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации - Алексей Сергеевич Гутора - Страница 22

Большие данные в компании
Как начать собирать большие данные
Контроль качества

Оглавление

Если в процедуре поиска сотрудников на первый взгляд сложно заметить влияние больших данных, то с контролем качества продукта или услуги все более-менее понятно. В этой области уже давно устоялись стандарты проверки, которые используют цифровые метрики. Например, если предприятие производит детали, то отдел контроля качества сравнивает их прочность с требуемой. И в случае, когда деталь ломается при меньшей нагрузке, чем планировалось, всю партию можно забраковать. Записи же об инциденте будут содержать всевозможную информацию: количество протестированных деталей, даты их выпуска, предельные нагрузки на них во время проверки и т. п., которая по результатам тестирования попадает в озеро данных компании. В дальнейшем эти сведения будут использовать для улучшения качества деталей, материала, производственного процесса. Таким образом, отдел контроля качества даже без приказа сверху самостоятельно собирает большие данные, на которых можно тренировать машину с целью получения рекомендаций относительно свойств деталей еще до того, как они будут физически созданы.

С другой стороны, существуют компании, в которых производственные процессы нельзя напрямую измерить цифрами. Например, невозможно сделать это применительно к бизнесу, который предоставляет услуги по прыжкам с парашютом, то есть обеспечивает получение клиентами свежих впечатлений.

Очевидно, что в момент свободного падения у неподготовленного человека происходит мощный выброс адреналина. А после приземления бессмысленно просить его оценить полет по десятибалльной шкале. Потому что в ответ вы рискуете услышать лишь междометия. Скорее всего, клиент даже не способен будет произнести ни одной цифры, просто потому что он их все забудет, или и вовсе не поймет, не услышит вопроса из-за перенесенного стресса.

Ситуация для бизнеса критическая. Но и тут можно многое придумать, используя большие данные. Давайте мысленно проведем эксперимент с подобной компанией. Поставим следующую цель: добиться того, чтобы впечатления от прыжка с парашютом были одинаковыми у всех категорий клиентов – и у новичков, и у опытных. Мы хотим, чтобы после полета количество эндорфина (гормона счастья) в крови каждого клиента было одинаковым при минимальных затратах со стороны компании. С учетом всего этого план по снижению издержек будет звучать так: впечатлительных клиентов выталкиваем за борт пораньше, на средних высотах, а спокойных только на большой высоте. В итоге у всех клиентов после прыжка будет одинаковый уровень эндорфина, а компания неплохо сэкономит на солярке и ремонте.

Для реализации этого плана соберем необходимые нам большие данные, проведя ряд экспериментов. Возьмем десяток спортсменов разного уровня подготовки. Сбросим их с парашютом в разные дни и с разной высоты. Затем сохраним все данные по каждому прыжку. Даже уровень эндорфина в крови, взятой из вены каждого участника. Так у нас появятся большие данные, в которых будет содержаться следующая информация:

• Способ заказа услуги, дата заказа, способ оплаты.

• Вес, рост, пол клиента.

• Дата и время взлета, прыжка, приземления.

• Высота и максимальная скорость при прыжке.

• Температура, давление, осадки, облачность, видимость на разных высотах.

• Скорость набора высоты при взлете.

• Ширина и долгота точки, в которой был совершен выход из самолета, и места, где состоялось приземление.

• Размер и тип парашюта.

• Показатели артериального давления, частоты пульса и сатурации (уровень кислорода) до, после и во время прыжка.

• Уровень эндорфина, адреналина и других гормонов (и всего, что можно измерить) в крови до и после прыжка.

•… и еще бесконечное множество параметров, которые только существуют, включая фазу луны, количество водоемов в 100 метрах от аэродрома, наличие повара в столовой летного училища.

Число собираемых параметров ограничивается лишь фантазией сотрудников компании, которые проводят эксперимент. Но важно, чтобы их было как можно больше. Потому что на собранных данных будет тренироваться модель машинного обучения, которая в дальнейшем сможет предсказывать уровень эндорфина в крови клиента.

Обратите внимание, что после окончания эксперимента и обучения машины прогнозированию, для собственно предсказания не требуется собирать абсолютно всю информацию о настоящих клиентах, то есть достаточно будет лишь измерить их рост, вес и пульс до прыжка (это можно сделать с помощью спортивного браслета с пульсометром), и машина попробует выдать прогноз по этому ограниченному набору данных. Конечно, чем больше параметров введено, тем выше точность предсказания, но и этого минимального пакета вполне достаточно для прогноза хотя бы примерного уровня эндорфина. И нет нужды брать у клиента кровь из вены.

Обычно предсказание по готовой, обученной модели происходит за доли секунды. Это означает, что система может работать буквально во время полета, снимая показания пульса клиента. И когда машина даст сигнал «дошел до кондиции», инструктору останется только настойчиво предложить клиенту насладиться процессом свободного падения прямо сейчас. А чем меньший вес перевозит самолет, тем меньше топлива он тратит, следовательно, компания снижает издержки. С такой моделью предсказаний «удовлетворенности» клиентов расходы на обслуживание воздушного судна снижаются довольно динамично.

Возможно, приведенный пример несколько экзотичен, но он точно иллюстрирует схему сбора и использования больших данных в коммерческих целях. Даже в сфере обслуживания можно получить достаточно числовых данных, чтобы иметь возможность влиять на степень удовлетворенности клиентов, предсказывать уровень испытываемого ими счастья и, как следствие, сокращать издержки.

Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации

Подняться наверх