Читать книгу Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации - Алексей Сергеевич Гутора - Страница 9

Цель цифровизации и сбора больших данных
Как заработать больше

Оглавление

Рассмотрим аналитический процесс (анализ больших бизнес-данных) с точки зрения обычного человека. В качестве примера возьмем продажи питьевых йогуртов. Для проведения анализа люди используют графики. Например, график зависимости средней прибыли компании от количества бутылок йогурта в одной проданной упаковке:


На таком графике любой человек с легкостью может найти самый высокий показатель и сделать вывод: «Если класть в упаковку по 5 йогуртов, чистая прибыль будет максимальной и составит 160 рублей за одну такую проданную упаковку». И это верное заключение, с одной лишь оговоркой. Двухмерный график строится тогда, когда все остальные параметры зафиксированы. Например, этот график справедлив при значении объема бутылки в 100 мл. Но как он поведет себя, если построить его исходя из разных объемов емкости? Давайте попробуем изобразить трехмерный вариант такого графика.


С изменением объема одной бутылки изменяется и чистая прибыль. Поэтому для получения максимальной выгоды надо найти на трехмерном графике наивысшую точку и определить уже два параметра: количество бутылок в упаковке и объем одной бутылки.

Рекомендую прямо сейчас зайти на сайт RealBigData.ru, который был создан специально для демонстрации идей, изложенных в этой книге. Там представлен этот трехмерный график в интерактивном формате, его можно «покрутить» и найти параметры точки максимума (координаты появляются при наведении курсора мыши).

Как можно заметить на трехмерном графике, вершина имеет значение в 230 рублей и находится в координатах «5 бутылок, 130 мл объема». Добавив лишь одну ось к предыдущему графику, мы смогли найти такие параметры товара, которые дали на 21 % больше прибыли! Чувствуете силу данных? Попробуем улучшить результат, увеличив количество осей…

На трехмерном графике любой из нас без особого труда может чисто визуально найти максимум. Такой несложный алгоритм поиска наивысшей прибыли может дать хорошие результаты. Но если на график добавить еще одну ось, то человеку будет уже очень трудно справиться с поставленной задачей по поиску параметров, определяющих максимум. Потому что он не может представить четырехмерное пространство. Получается, что такой визуальный способ не является ни универсальным, ни точным из-за невозможности с его помощью рассмотреть все переменные одновременно. Это приводит к тому, что питьевые йогурты будут продаваться не с максимально возможной прибылью. А в условиях конкурентного рынка недостающие проценты прибыли могут привести к банкротству. Какой вывод? С этого момента лучше прибегнуть к помощи компьютера.

Теперь попробуем провести анализ приведенных графиков с точки зрения машины. Компьютер не сможет изучать графики визуально, как это делаем мы, потому что у него нет глаз. Он поведет себя как незрячий человек, ощупает всю поверхность графика и таким образом разыщет максимум. На первый взгляд такой способ выглядит трудозатратным. Но представьте, что нужно предсказать чистую прибыль не по двум параметрам (количество бутылок и их объем), а по десяти:

1. Количество бутылок.

2. Объем одной бутылки.

3. Температура бутылки.

4. Толщина стенки бутылки.

5. Прочность крышки.

6. Время суток, когда была совершена продажа.

7. Размер скидки.

8. Возраст покупателя.

9. Пол покупателя.

10. Наличие шляпы на голове покупателя.

Для проведения анализа по этим данным придется строить не двух- или трехмерный график, а одиннадцатимерный (10 параметров + 1 ось – чистая прибыль как предсказываемая величина), представляющий собой одиннадцать перпендикулярных друг другу осей, выходящих из одной точки. Обычный смертный не может ни нарисовать такой график, ни визуально найти на нем максимум. А вот компьютеру даже не придется менять его подход: незрячая машина последовательно ощупает все оси, методично переберет все значения, сравнит результаты всех возможных комбинаций и в итоге выдаст ответ, при каких параметрах будет получена максимальная прибыль. Но для этого нужны большие данные, которые надо специально и тщательно собирать. И чем ответственнее компания подходит к этому процессу, а также к обработке данных, тем больше увеличит свою прибыль, повысит качество предлагаемого товара или услуги и тем сильнее снизит издержки в результате использования машинного интеллекта.

У вас могут возникнуть вопросы: «Погодите, каким образом связаны одиннадцатимерный график, на котором представлены различные параметры йогурта, и машинное обучение? В предыдущем примере компьютер обучали, показывая ему фотографии собак, а теперь кто, кого, чему и как учит? Как на этом сделать прибыль?» Чтобы ответить на них, надо разобрать данные, касающиеся параметров йогурта подробнее. Компания методично собирала эти данные, экспериментируя с размерами упаковки и продавая разные ее варианты в различных магазинах разным покупателям и в разное время. Несложно догадаться, что фирма не смогла бы проверить все возможные комбинации полученных данных, то есть перебрать все значения параметров, чтобы как можно точнее описать «изгибы» одиннадцатимерного графика и определить максимальные значения прибыли. В результате у них получился график с «пропусками», то есть с областями, в которых отсутствовали данные. К примеру, компании совсем не удалось получить информацию о продаже йогурта вечером покупателю в шляпе. Это не значит, что такой продажи не было или не могло бы быть. Просто именно для этого сочетания значений параметров нет данных. И как же в таком случае быть? Вот тут-то и вступает в дело «машинное обучение» или «искусственный интеллект».

Натренированную на данных машину можно попросить предсказать значение прибыли в точке пропуска на графике, то есть в области, для которой данные еще не были получены экспериментальным путем. В нашем случае запрос к машине на предсказание будет звучать так: «Сколько бы заработала компания, если бы продала йогурт покупателю в шляпе вечером?» В ответ компьютер выдаст нам точное число, полученное из имеющихся в распоряжении данных. Это произойдет невзирая на то, что в действительности подобная ситуация еще никогда не случалась. Так компания сэкономит значительные средства на проведении реальных экспериментов с разными типами упаковок йогурта и не только.

Заполнение машиной пропущенных значений на одиннадцатимерном графике отчасти можно сравнить с ремонтом лоскутного одеяла с помощью заплаток. Сначала изучают края дыры, определяют, какой формы заплатка требуется. Затем «пробел» латают. После этого график можно считать более-менее полным. Однако нужно понимать, что если дырки в графике слишком большие, то есть реальных данных очень мало, то предсказания будут неточными. Это как невозможно подобрать нужный лоскут для ремонта, если дыра огромного размера, иначе будет нарушен рисунок. В таком случае, увы, придется покупать новое одеяло. Поэтому никогда не выкидывайте данные, накапливайте их для обучения компьютеров. Чем больше данных, тем меньше потребность в заплатках. А значит, точнее предсказания.

Возможно, иллюстрация с йогуртом показалась кому-то из читателей несколько надуманной. Приведу реальный пример, касающийся больших данных, чтобы доказать, что это совсем не так. Обратимся к открытому соревнованию Concrete compressive strength[3], в рамках которого специалисты по данным должны были определить состав самого твердого бетона. Участникам предоставили частичную информацию, в которой содержались сведения относительно прочности образцов в зависимости от соотношения различных компонентов и параметров. Всего было шестнадцать переменных:

1. Количество цемента.

2. Количество доменного шлака.

3. Количество золы.

4. Количество воды.

5. Количество «суперпластификатора».

6. Плотность пластификатора.

7. Количество крупного заполнителя.

8. Количество мелкого заполнителя.

9. Количество компонента MixtureMeasurement9.

10. Количество компонента SSL9000.

11. Значение параметра O2_purityscore.

12. Количество компонента F192.

13. Оценка по шкале TysonScore.

14. Площадь бетона.

15. Возраст бетона.

16. Влажность бетона.

Производитель бетона собирал данные, изучая имеющиеся у него образцы, и пытался найти такое соотношение ингредиентов, при котором прочность была бы максимальной. Очевидно, что если бы компания решила действовать путем «перебора» всех возможных соотношений, то у нее не хватило бы ни денег, ни времени (продолжительности жизни сотрудников), чтобы протестировать все возможные комбинации. Для решения именно таких задач и предназначено машинное обучение. Созданный на основе собранных данных алгоритм способен предсказывать значения для «пробелов», благодаря чему можно получить результаты тех экспериментов, которые еще не проводились в реальности, то есть спрогнозировать будущее. К примеру, если компания-производитель бетона спросит: «Какова будет прочность, если использовать в два раза больше золы?», то машина ответит что-то вроде: «Прочность упадет на 26.7 %». Так фирма может проводить миллионы экспериментов в день, не тратя на это ни копейки. Действуя подобным образом, рано или поздно компания обязательно найдет лучшее соотношение компонентов для создания самого прочного и дешевого бетона.

3

Соревнование по поиску формулы самого твердого бетона (https://www.kaggle.com/competitions/dat200-2019-ca3/overview).

Большие данные, цифровизация и машинное обучение для собственников и топ-менеджеров, Или как зарабатывать больше с помощью информации

Подняться наверх