Читать книгу Необычные размышления о… - - Страница 10
9. Измерение суммарной скорости перемещения галактики, Солнца и Земли
ОглавлениеТаким образом, нам ничто не мешает измерить скорость суммарного движения галактики, Солнца и Земли, при нашем пребывании на поверхности Земли внутри галактики. И, вопреки утверждениям Галилео Галилея о том, что невозможно, находясь внутри объекта, который перемещается равномерно и прямолинейно (в инерциальной системе), отличить, пребывает ли он в состоянии покоя или находится в движении.
Оказывается, что даже можно измерить скорость такого объекта в любой, в практически мгновенный момент времени, построить график изменения скорости объекта во времени, и уже из графика узнать все о характере движения объекта. Напомним читателю, что точка испускания фотона (точка И) остается в неподвижной сетке и встраивается в неподвижную сетку (абсолютную систему отсчета). Кстати, абсолютный покой означает, что параметр m = 0. В этом случае, материальный объект неподвижен относительно любых точек испускания фотонов, испущенных и в прошлом, и в настоящем.
На нижней схеме рис. 8.1. мы наглядно видим, что точка И не перемещается вслед за фотоном, а, также, вслед за часами Ч1, что согласуется с нашими предыдущими рассуждениями. Попробуем оценить возможности наших измерений цезиевыми часами. Пусть, для определенности: L=1000 метров, V=1000 000 метров в секунду, тогда параметр m=3,3333 метра. Это то лишнее расстояние, которое вынужден пробежать свет, догоняя убегающие часы Ч2 и приемник света П. Напомним, что обусловлено такое убегание и лишнее расстояние перемещением галактики.
В параметре m заключена вся информация о скорости перемещения галактики, Солнца и Земли. 3,3333 метра свет пролетит за 11,0057 наносекунд. При этом, цезиевые часы насчитают лишних 101,2 циклов колебаний излучения. В цифре 101,2 – вся информация об измеряемой скорости V=1000 км/сек. Если L= 100 метров, то полезная информация будет включена в цифру 10,12 циклов. Мало. Если L=10 метров, то говорить не о чем (1,012 цикла). Цезиевые часы не помогут.
Для фундаментальных исследований расстояние: L= 1000 метров – не проблема. Но в подводную лодку или в космический аппарат, измерительный канал длиной в один километр – не всунуть. То есть для решения навигационной задачи необходимы дополнительные умствования. Но об этом чуть позже.
Мы рассмотрели случай, когда вектор скорости перемещения объекта полностью совпадает с направлением перемещения испускаемого фотона. На самом деле, применительно к суммарному вектору скорости галактики, Солнца и Земли, мы заблаговременно ничего не можем сказать об ориентации такого вектора в пространстве. То есть, мы заранее не знаем, куда направлять фотон (свет). В этом случае, мы должны обратиться к векторной математике. Построим прямоугольную (декартову) систему координат OXYZ. В начале такой системы координат поместим устройство, с помощью которого будем одновременно запускать три фотона в направлении трех осей системы координат, а также, в начале координат поместим часы Ч0. На трех координатных осях, на одинаковых расстояниях от центра такой декартовой системы координат, установим часы, соответственно, Чx, Чy, Чz.
Нетрудно видеть, что мы пролонгировали систему, на три оси декартовой системы координат. Если в центр такой декартовой системы координат поместить суммарный вектор скорости перемещения галактики V, ориентация которого в пространстве заранее неизвестна, то представляется возможным разложить такой вектор на его проекции по осям координат: Vx, Vy, Vz. Методика, изложенная выше, применительно к схеме на рис. 8.1, а также устройства (часы, источники испускания фотонов, приемники фотонов), установленные на осях системы координат OXYZ, позволяют измерить проекции Vx, Vy, Vz вектора скорости V.
По таким измеренным проекциям можно рассчитать величину вектора V, используя формулу векторной математики:
V = (Vx2 + Vy2 + Vz2)1/2. (9.1)
Ориентацию суммарного вектора скорости движения галактики, Солнца и Земли относительно осей нашей декартовой системы координат можно установить с помощью, так называемых, направляющих косинусов по формулам векторной математики:
COS X = Vx/V; COSY = Vy/V; COSZ = Vz/V. (9.2).
Напомним читателю, что время проведения измерения вектора скорости складывается из времени преодоления фотоном расстояния L (смотри рис. 8.1.), а, это 3335 наносекунд при L=1000 метров; времени считывания показаний часов – микросекунды; времени обработки (расчетов) информации в автоматическом режиме, на современных компьютерах – микросекунды.
В целом, процедура измерения вектора скорости V не превысит долей миллисекунды. Так что, процесс измерения – почти мгновенен. Если измерения приводить каждый час, то в течение суток получим 24 точки замеров, в течение года получим – 8760 точек замеров. Такие замеры можно использовать для построения графика изменения суммарного вектора скорости в течение определенного календарного срока времени, например, в течение года. Возможный вид такого графика может быть представлен на рис. 9.1. Если бы мы знали все о взаимном расположении в пространстве составных частей суммарного вектора скорости движения галактики, Солнца и Земли, то мы бы представили читателю более точную картину изображения такого вектора скорости. Поэтому приходится говорить о возможном виде такого графика. На рис. 9.1. по оси ординат отображена величина суммарного вектора скорости движения галактики, Солнца и Земли. Ось абсцисс – временная шкала.
Рис. 9.1
где:
Vгс – суммарный вектор скорости, который образован путем векторного сложения скорости галактики и вектора линейной скорости перемещения Солнца, при его вращении вокруг центра галактики (постоянная, в течение 10 лет, составляющая вектора V);
1 – проекция траектории годового движения Земли вокруг Солнца на линию в пространстве – на вектор Vгс;
2 – проекция траектории суточного движения Земли вокруг земной оси вращения, на траекторию годового движения Земли. Такая проекция отображена не в масштабе, поскольку количество циклов суточных колебаний на годовой синусоиде должно быть 365. Такое количество суточных циклов не уместить на представленном рисунке;
3 – траектория суммарного перемещения в пространстве галактики и Солнца вокруг центра галактики. В течение 10 лет наблюдений за такой траекторией, ее имеет смысл рассматривать в качестве прямой линии. После 10 лет таких наблюдений, необходимо учитывать вращательное движение Солнца вокруг центра галактики.
Зададим вопрос: что будет, если мы станем испускать фотон в сторону, строго противоположную вектору скорости движения нашего объекта? В этом случае, до встречи с часами, фотон пролетит меньшее расстояние: L-m. Время, за которое фотон преодолевает такое расстояние, будет меньше, в сравнении с расстоянием: L+m.
Если, с помощью зеркала, заставить фотон перемещаться из точки испускания в точку приема и обратно – в точку испускания, то, в этом случае, фотон преодолеет расстояние: (L-m)+(L+m)=2L. Время преодоления такого двойного расстояния – соответствующее. При этом, мы видим, что реализация схемы измерения по принципу: перемещение фотона туда и обратно, ведет к потере параметра m. А это означает невозможность измерить скорость перемещения объекта, реализуя принцип измерения: туда и обратно. Так что, мы вынуждены измерять скорость движения объекта, путем перемещения фотона только в одну сторону, которая совпадает с направлением перемещения объекта. И это принципиально.
Реализация такого принципа позволяет нам понять, почему Альберт Майкельсон и его коллега Морли, не заявили об обнаружении светоносного эфира. Такое заявление они могли бы произнести, если бы сумели измерить скорость перемещения галактики и объяснить (интерпретировать) такое перемещение движением светоносного эфира. Но для этого, они должны были бы располагать соответствующим инструментарием. Например, цезиевыми часами, у которых высочайшая чувствительность измерения времени, и другими устройствами, которые позволяли бы им испускать и принимать испущенные фотоны, а в моменты испускания и приема этих фотонов, снимать и запоминать показания цезиевых часов.
В те далекие времена всего этого добра не было, и быть не могло. Цивилизации потребовались столетия, чтобы разработать и создать такое добро. Поэтому Майкельсон и его коллега воспользовались интерферометром, изобретенным Майкельсоном.
Свойством любого интерферометра является то, что у всех у них – один источник света. Если в интерферометр поместить два и более источника света, то становится невозможным получить когерентность циркулирующих в интерферометре лучей света. А, без когерентности лучей света, не получить интерференционную картину. Поэтому создатели интерферометров вынуждены встраивать в интерферометр зеркала, между которыми циркулируют лучи света, реализуя перемещение таких лучей по принципу: “туда и обратно”. А, это в принципе не позволяет измерить скорость объекта (галактики, Земли), с помощью, установленного в таком объекте интерферометра.
И, это – очень хорошо. Майкельсон и его коллега, 7 лет что-то там измеряли во всех пространственных направлениях, а также, в любые времена года и суток. И, слава богу, ничего не намерили. А, ведь, могли что-то намерить и объявить измеренное движением светоносного эфира. Настрой у них был такой: во чтобы-то не стало, найти светоносный эфир. Правда, они нашли нечто, на много более важное: установили независимость скорости перемещения света от скорости движения материального объекта.
Конечно, было бы не плохо, найти такого настойчивого Майкельсона и его коллегу, которые смогли бы на практике реализовать нашу идею измерения скорости галактики, Солнца и Земли. Только практика, а, не умствования, являются критерием истины. К сожалению, нам самим, не осилить такого рода практику. Одни, только цезиевые часы стоят столько, что даже подумать страшно. А, потому, продолжим наши умствования. И постараемся воспользоваться уже известными объектами. Например, лазерной интерферометрической обсерваторией (LIGO). Но об этом чуть позже. А пока, давайте попробуем определить пользу от всех наших возможных изысков.