Читать книгу Amorphous Nanomaterials - Lin Guo - Страница 25

References

Оглавление

1 1 Hilden, L.R. and Morris, K.R. (2004). Physics of amorphous solids. J. Pharm. Sci. 93: 3–12.

2 2 Anderson, P.W. (1995). Through the glass lightly. Science 267: 1615–1616.

3 3 Couzin, J. (2005). What is the nature of the glassy state. Science 309: 83–83.

4 4 Zhang, D.-F., Zhang, H., Guo, L. et al. (2009). Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 19: 5220–5225.

5 5 Fisher, I.R., Kramer, M.J., Islam, Z. et al. (2000). Growth of large single-grain quasicrystals from high-temperature metallic solutions. Mater. Sci. Eng. A 294: 10–16.

6 6 Zhang, Z., Ye, H.Q., and Kuo, K.H. (1985). A new icosahedral phase with m35 symmetry. Philos. Mag. A 52: L49–L52.

7 7 Yue, Y., Zheng, K., Zhang, L., and Guo, L. (2015). Origin of high elastic strain in amorphous silica nanowires. Sci. China Mater. 58: 274–280.

8 8 Hirata, A., Guan, P., Fujita, T. et al. (2011). Direct observation of local atomic order in a metallic glass. Nat. Mater. 10: 28–33.

9 9 Steno, N. (1669). De solido intra solidum naturaliter contento Dissertationis Prodromus. Florence: sub signo Stellae.

10 10 Bragg, W.L. (1913). The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. London Ser. A 89: 248–277.

11 11 Liebig, B. (1840). On amorphous quinine: as it exists in the substance known in commerce as quinoidine. Prov. Med. Surg. J. 10: 265.

12 12 Gore, G. (1862). On the properties of electro-deposited antimony. Proc. R. Soc. Lond. 12: 323–331.

13 13 Buckel, W. and Hilsch, R. (1954). Einfluß der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle. Zeitschrift für Physik 138(2): 109–120.

14 14 Turnbull, D. (1950). The supercooling of aggregates of small metal particles. JOM 2: 1144–1148.

15 15 Klement, W., Willens, R., and Duwez, P. (1960). Non-crystalline structure in solidified gold–silicon alloys. Nature 187: 869–870.

16 16 Zhang, T., Inoue, A., and Masumoto, T. (1991). Amorphous Zr–Al–TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32: 1005–1010.

17 17 Wang, J., Li, R., Hua, N., and Zhang, T. (2011). Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 26: 2072–2079.

18 18 Liu, Y.H., Wang, G., Wang, R.J. et al. (2007). Super plastic bulk metallic glasses at room temperature. Science 315: 1385–1393.

19 19 Hofmann, D.C., Suh, J.Y., Wiest, A. et al. (2008). Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451: 1085–1094.

20 20 Constable, F.H. (1925). The catalytic action of copper. Part VII. A study of the effect of pressure on the rate of dehydrogenation of alcohols. Proc. R. Soc. Lond. 107: 279–286.

21 21 Smith, G.V., Brower, W.E., Matyjaszczyk, M.S., and Pettit, T.L. (1981). Metallic glasses: new catalyst systems. Stud. Surf. Sci. Catal. 7: 355–363.

22 22 Brower, W., Matyjaszczyk, M., Pettit, T., and Smith, G. (1983). Metallic glasses as novel catalysts. Nature 301: 497–499.

23 23 Wang, J.Q., Liu, Y.H., Chen, M.W. et al. (2012). Rapid degradation of azo dye by Fe-based metallic glass powder. Adv. Funct. Mater. 22: 2567–2570.

24 24 LaMer, V.K. and Dinegar, R.H. (1950). Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72: 4847–4854.

25 25 Peng, X., Wickham, J., and Alivisatos, A.P. (1998). Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120: 5343–5344.

26 26 Oxtoby, D.W. (1998). Nucleation of first-order phase transitions. Acc. Chem. Res. 31: 91–97.

27 27 Weiner, S., Sagi, I., and Addadi, L. (2005). Choosing the crystallization path less traveled. Science 309: 1027–1028.

28 28 Gower, L.B. (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108: 4551–4627.

29 29 Gebauer, D. and Colfen, H. (2011). Prenucleation clusters and non-classical nucleation. Nano Today 6: 564–584.

30 30 De Yoreo, J.J., Gilbert, P.U., Sommerdijk, N.A. et al. (2015). Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349: 498.

Amorphous Nanomaterials

Подняться наверх