Читать книгу Amorphous Nanomaterials - Lin Guo - Страница 36
References
Оглавление1 1 Kirkland, E.J. (1984). Improved high resolution image processing of bright field electron micrograph: I. Theory. Ultramicroscopy 15: 151–172.
2 2 Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20: 293–304.
3 3 Scherzer, O. (1947). Spharische und chromatische korrektur von electronen-linsen. Optik 2: 114–132.
4 4 Crewe, A.V., Isaacson, M., and Johnson, D. (1969). A simple scanning electron microscope. Rev Sci. Instrum. 40: 241–246.
5 5 Browning, N.D., Chisholm, M.F., and Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366: 143–146.
6 6 Crewe, A.V., Isaacson, M., and Johnson, D. (1971). A high resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instrum. 42: 411–420.
7 7 Muler, D.A., Tzou, Y., Raj, R., and Silcox, J. (1993). Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366: 725–727.
8 8 Baston, P.E. (1993). Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366: 727–728.
9 9 Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium voltage transmission electron microscope. Optik 85: 19–24.
10 10 Meyer, R., Kirkland, A., and Saxton, W. (2004). A new method for the determination of the wave aberration function for high-resolution TEM.: 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99: 115–123.
11 11 Kuglin, C.D. and Hines, D.C. (1975). The phase correlation image alignment method. Proceedings of the IEEE International Conference on Cybernetics and Society, 163-165.
12 12 Tillmann, K., Thust, A., and Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc. Microanal. 10: 185–198.
13 13 Nellist, P.D., Behan, G., Kirkland, A.I., and Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89: 124105.
14 14 Pennycook, S.J., Chisholm, M.F., Varela, M. et al. (2004). Materials applications of aberration-corrected STEM. Microsc. Microanal. 10: 12–13.
15 15 Findlay, S.D., Shibata, N., Sawada, H. et al. (2009). Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95: 191913.
16 16 Jia, C.L., Houben, L., Thust, A., and Barthel, J. (2010). On the benefit of the negative-spherical aberration imaging technique for the quantitative HRTEM. Ultramicroscopy 110: 500–505.
17 17 Krivanek, O.L., Chisholm, M.F., Nicolosi, V. et al. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464: 571–574.
18 18 Gibson, J.M. (1987). Now you see them, now you don’t. Nature 329: 763–764.
19 19 Huxford, N.P., Eaglesham, D.J., and Humphreys, C.J. (1987). Limits on quantitative information from high-resolution electron microscopy of YBa2Cu3O7 superconductors. Nature 329: 812–813.
20 20 Coene, W., Janssen, G., Op de Beeck, M., and Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69: 3743–3746.
21 21 Jia, C.L. and Urban, K. (1998). Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition. J. Mater. Res. 13: 2206–2217.
22 22 Jia, C.L., Mi, S.B., Urban, K. et al. (2008). Atomic-scale study of electric dipoles near charge and uncharged domain walls in ferroelectric films. Nat. Mater. 7: 57–61.
23 23 Muller, D.A., Sorsch, T., Moccio, S. et al. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399: 758–761.
24 24 Chau, R., Doyle, B., Datta, S. et al. (2007). Integrated nanoelectronics for the future. Nat. Mater. 6: 810–812.
25 25 Baibich, M.N., Broto, J.M., Fert, A. et al. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61: 2472–2475.
26 26 Murdock, E.S., Natarajan, B.R., and Walmsley, R.G. (1990). Noise properties of multilayered Co-alloy magnetic recording media. IEEE Trans. Magn. 26: 2700–2705.
27 27 Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R. (1995). Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74: 3273–3276.
28 28 Fert, A. (2008). Origin, development and future of spintronics (Noble lecture). Angew. Chem. Int. Ed. 47: 5956–5967.
29 29 Schweinfest, R., Paxton, A.T., and Finnis, M.W. (2004). Bismuth embrittlement of copper is an atomic size effect. Nature 432: 1008–1011.
30 30 Lozovoi, A.Y., Paxton, A.T., and Finnis, M.W. (2006). Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper. Phys. Rev. B 74: 155416.
31 31 Voyles, P.M., Muller, D.A., Grazuil, J.L. et al. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416: 826–829.
32 32 Jia, C.L., Lentzen, M., and Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299: 870–873.
33 33 Muller, D.A., Nakagawa, N., Ohtomo, A. et al. (2004). Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430: 657–661.
34 34 Ishikawa, R., Okunishi, E., Sawada, H. et al. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10: 278–281.
35 35 Krivanek, O.L., Dellby, N., Murfitt, M.F. et al. (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110: 935–945.
36 36 Ohtsuka, M., Yamazaki, T., Kotaka, Y. et al. (2012). Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120: 48–55.
37 37 Lin, J., Cretu, O., Zhou, W. et al. (2014). Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9: 436–442.
38 38 Zan, R., Ramasse, Q.M., Banegert, U., and Novoselow, K.S. (2012). Graphene re-knits its holes. Nano Lett. 12: 3936–3940.
39 39 Gong, Y., Liu, Z., Lipini, A.R. et al. (2014). Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14: 442–449.
40 40 Biskup, N., Salafranca, J., Mehta, V. et al. (2014). Insulating ferromagnetic LaCoO3-δ films: a phase induced by ordering of oxygen vacancies. Phys. Rev. Lett. 112: 087202.
41 41 Spiecker, E., Garbrecht, M., Jager, W., and Tillmann, K. (2010). Advantages of aberration correction for HRTEM investigation of complex layer compounds. J. Microsc. 237: 341–346.
42 42 Crewe, A.V. (1966). Scanning electron microscopes: is high resolution possible? Science 154: 729–738.
43 43 Neaton, J.B., Muller, D.A., and Ashcroft, N.W. (2000). Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85: 1298–1301.
44 44 Muller, D.A., Singh, D.J., and Silcox, J. (1998). Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys. Rev. B 57: 8182–8202.
45 45 Ohtomo, A., Muller, D.A., Grazul, J.L., and Hwang, H.Y. (2002). Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419: 378–380.
46 46 Browning, N.D., Wallis, D.J., Nellist, P.D., and Pennycook, S.J. (1997). EELS in the STEM: determination of materials properties on the atomic scale. Micron 28: 333–348.
47 47 Scheinfein, M. and Isaacson, M. (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B 4: 325–332.
48 48 Daulton, T.L., Little, B.J., and Lowe, K. (2003). Determination of chromium oxidation state in cultures of dissimilatory metal reducing bacteria by electron energy loss spectroscopy. Microsc. Microanal. 9: 1480–1481.
49 49 Bosman, M., Watanabe, M., Alexander, D.T.L., and Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106: 1024–1032.
50 50 Krivanek, O.L., Dellby, N., Keyse, R.J. et al. (2008). CHAPTER 3- Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. Adv. Imag. Elect. Phys. 153: 121–160.
51 51 Howie, A. (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc. R. Soc. Lond. A 271: 268–287.
52 52 Muller, D. and Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59: 195–213.
53 53 Kimoto, K., Asaka, T., Nagai, T. et al. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450: 702–704.
54 54 Yin, X.L., Calatayud, M., Qiu, H. et al. (2008). Diffusion versus desorption: complex behavior of H atoms on an oxide surface. ChemPhysChem 9: 253–257.
55 55 Fan, C.Y., Wang, J., Jacobi, K., and Ertl, G.J. (2001). The oxidation of CO on RuO2 (110) at room temperature. Chem. Phys. 114: 1058–1061.
56 56 Kurtz, M., Strunk, J., Hinrichsen, O. et al. (2005). Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem. Int. Ed. 44: 2790–2794.
57 57 Suenage, K. and Koshino, M. (2012). Atom-by-atom spectroscopy at graphene edge. Nature 468: 1088–1090.
58 58 Suenage, K., Kobayashi, H., and Koshino, M. (2012). Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 108: 075501.
59 59 Suenaga, K., Sato, Y., Liu, Z. et al. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1: 415–418.
60 60 Meyer, J.C., Kisielowski, C., Erni, R. et al. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8: 3582–3586.
61 61 Ramasse, Q.M., Seabourne, C.R., Kepaptsogloum, D.M. et al. (2013). Probing the bonding and electronic structure of single atom dopants in grapheme with electron energy loss spectroscopy. Nano Lett. 13: 4989–4995.
62 62 Andrews, S.B., Leapman, R.D., Landis, D.M., and Reese, T.S. (1987). Distribution of calcium and potassium in presynaptic nerve terminals from cerebellar cortex. Proc. Natl Acad. Sci. U S A 84: 1713–1717.
63 63 Gloter, A., Suenaga, K., Kataura, H. et al. (2004). Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 390: 462–466.
64 64 Hunt, J.A. and Williams, D.B. (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38: 47–73.
65 65 Bosman, M., Keast, V., Garcia-Munoz, J. et al. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99: 86102.
66 66 Krivanek, O.L., Corbin, G.J., Dellby, N. et al. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108: 179–195.
67 67 Egerton, F.R. (1975). Inelastic scattering of 80 keV electrons in amorphous carbon. Philos. Mag. 31: 199–215.
68 68 Egerton, F.R. (2002). Improved background-fitting algorithms for ionization edges in electron energy-loss spectra. Ultramicroscopy 92: 47–56.
69 69 Huang, J.Y., Zhong, L., Wang, C.M. et al. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330: 1515–1520.
70 70 Yuan, Y., Nie, A., Odegard, G.M. et al. (2015). Asynchronous crystal cell expansion during lithiation of K+-stabilized α–MnO2. Nano Lett. 15: 2998–3007.
71 71 Poizot, P., Larulle, S., Grugeon, S. et al. (2000). Nano-sized transition-metal oxides as negative-electrode materials for the lithium-ion batteries. Nature 407: 496–499.
72 72 He, K., Zhang, S., Li, J. et al. (2016). Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7: 11441.
73 73 Su, Q., Xie, D., Zhang, J. et al. (2013). In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/grapheme anode during lithiation-delithiation processes. ACS Nano 7: 6354–6360.
74 74 Muralidharan, N., Brock, C.N., Cohn, A.P. et al. (2017). Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11: 6243–6251.
75 75 Qian, J., Xiong, Y., Cao, Y. et al. (2014). Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 14: 1865–1869.
76 76 Li, Q., Wei, Q., Zuo, W. et al. (2016). Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 8: 160–164.
77 77 Zhou, J., Chen, J., Chen, M. et al. (2019). Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 31: 1807874.
78 78 Deng, L., Yang, Z., Tan, L. et al. (2018). Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30: 1802510.
79 79 Niu, X., Zhang, Y., Tan, L. et al. (2019). Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 22: 160–167.
80 80 Zeng, Z., Liang, W.I., Liao, H.G. et al. (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14: 1745–1750.
81 81 Egerton, R., Li, P., and Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35: 399–409.
82 82 Liu, X.H., Liu, Y., Kushima, A. et al. (2012). In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2: 722–741.
83 83 Abellan, P., Mehdi, B.L., Parent, L.R. et al. (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14: 1293–1299.
84 84 Yuan, Y., Wood, S.M., He, K. et al. (2016). Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 10: 539–548.
85 85 Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R. et al. (2015). Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9: 4379–4389.
86 86 Holtz, M.E., Yu, Y., Gunceler, D. et al. (2014). Nanoscale imaging of lithium ion distribution during in situ operation of a battery electrode and electrolyte. Nano Lett. 14: 1453–1459.
87 87 Simonsen, S.B., Chorkendorff, I., Dahl, S. et al. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132: 7968–7975.
88 88 Kinke, C., Bonard, J.M., and Kern, K. (2004). Formation of metallic nanocrystals from gel-like precursor films for CVD nanotube growth: an in situ TEM characterization. J. Phys. Chem. B 108: 11357–11360.
89 89 Zhang, L., Miller, B.K., and Crozier, P.A. (2013). Atomic level in situ observation of surface amorphization in anatase photocatalyst during light irradiation in water vapor. Nano Lett. 13: 679–684.
90 90 Somorjai, Y.L.G.A. (2010). Introduction to Surface Chemistry and Catalysis. New York: Wiley.
91 91 Hansen, P.L., Wagner, J.B., Helveg, S. et al. (2002). Atomic-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295: 2053–2055.
92 92 Yoshida, H., Kuwauchi, Y., Jinschek, J.R. et al. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335: 317–319.
93 93 Yoshida, H. and Takeda, S. (2005). Image formation in a transmission electron microscope equipped with an environment cell: single-walled carbon nanotube in source gases. Phys. Rev. B 72: 195428.
94 94 Suzuki, M., Yaguchi, T., and Zhang, X.F. (2013). High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy 62: 437–450.
95 95 Pastina, B. and LaVerne, J.A. (2001). Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105: 9316–9322.
96 96 Joseph, J.M., Seon Choi, B., Yakabuskie, P., and Clara Wren, J. (2008). A combined experimental and model analysis on the effect of pH and O2 (aq) on γ-radiolytically produced H2 and H2O2. Radiat. Phys. Chem. 77: 1009–1020.
97 97 Remita, H., Lampre, I., Mostafavi, M. et al. (2005). Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Radiat. Phys. Chem. 72: 575–586.
98 98 Zheng, H.M., Smith, R.K., Jun, Y.W. et al. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324: 1309–1312.
99 99 Liao, H.G., Cui, L.K., Whitelam, S., and Zheng, H.M. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336: 1011–1014.
100 100 Li, J., Chen, J., Wang, H. et al. (2018). In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 5: 1700992.
101 101 Yuk, J.M., Park, J., Ercius, P. et al. (2012). High resolution EM of colloidal nanocrystal growth using grapheme liquid cells. Science 336: 61–64.
102 102 Yu, Y., Xin, H.L., Howden, R. et al. (2012). Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 12: 4417–4423.
103 103 Kushima, A., Koido, T., Fujiwara, Y. et al. (2015). Charging/discharging nanomorphology capacity degradation in Li-oxygen battery. Nano Lett. 15: 8260–8265.
104 104 Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58: 7565–7576.
105 105 Iwasawa, Y., Asakura, K., and Tada, M. (2017). XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Cham: Springer.
106 106 Calvin, S. (2013). XAFS for Everyone. Boca Raton, FL: CRC Press.
107 107 Sayers, D.E., Stern, E.A., and Lytle, F.W. (1971). New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 27: 1204.
108 108 Bordiga, S., Groppo, E., Agostini, G. et al. (2013). Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113: 1736–1850.
109 109 Su, X.Z., Wang, Y., Zhou, J., and Gu, S.Q. (2018). Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 140: 11286–11292.
110 110 Song, S.Z., Zhou, J., Su, X.Z., and Wang, Y. (2018). Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 10: 2945–2953.
111 111 Liu, J.Z., Nai, J.W., You, T.T., and An, P.F. (2018). The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 14: 1703514–1703521.
112 112 Liu, J.Z., Ji, Y.F., and Nai, J.W. (2018). Ultrathin amorphous cobalt–vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 11: 1736–1741.