Читать книгу Таємниці походження всесвіту - Лоуренс М. Краусс - Страница 9

Частина 1
Буття
Розділ 6
Тіні реальності

Оглавление

І сталося, як вони все йшли та говорили, аж ось появився огняний віз та огняні коні, і розлучили їх одного від одного.

2 Царів 2:11

1908 року, після приголомшливого відкриття несподіваного прихованого зв’язку між простором і часом, можна було б подумати, що природі більше немає чим нас здивувати. Проте космосу начхати на наші відчуття. І світло ще раз надало ключа до дверей кролячої нори у світ, порівняно з яким пригоди Аліси здаються дитячими забавками.

Хоча зв’язки, які виявили Ейнштейн та Мінковський, можуть здатися химерними, їх, як я намагався продемонструвати, можна інтуїтивно зрозуміти, виходячи зі сталості швидкості світла. Значно менш інтуїтивним було наступне відкриття, яке полягало в тому, що в дуже малих масштабах природа поводиться таким чином, який людська інтуїція не в змозі навіть повною мірою усвідомити, оскільки ми не здатні безпосередньо сприймати цю поведінку.

Як сказав одного разу Річард Фейнман, ніхто не розуміє квантову механіку, якщо тлумачити розуміння як розробку конкретної фізичної картини, що справляє враження повністю інтуїтивної.

Навіть через багато років після відкриття правил квантової механіки ця дисципліна продовжує підносити сюрпризи. Приміром, 1952 року астрофізик Генбері Браун збудував прилад для вимірювання кутового розміру великих джерел радіохвиль у небі. Він працював настільки добре, що вони з колегою Річардом Твіссом спробували застосувати цю саму ідею для вимірювання оптичного світла від окремих зір для визначення їхнього кутового розміру. Багато фізиків стверджували, що їхній інструмент, названий інтерферометром інтенсивностей, не буде працювати. Вони були переконані, що квантова механіка це виключає.

Але він спрацював. Це був не перший і далеко не останній раз, коли фізики помилялися щодо квантової механіки…

Опановування химерної поведінки квантової механіки нерідко означає прийняття того, що здавалося неможливим. Як жартівливо висловився сам Браун, намагаючись пояснити теорію свого інтерферометра інтенсивностей, вони з Твіссом тлумачили «парадоксальну природу світла, або, якщо хочете, пояснювали незбагненне, себто робили щось дуже й вельми несподівано схоже на проповідування афанасіївського символу віри». І справді, подібно до багатьох із найхимерніших результатів квантової механіки, Свята Трійця – Отець, Син та Дух Святий, одночасно втілені в єдиній сутності, – також здається неможливою. Зрештою, цим подібність вичерпується.

Здоровий глузд також каже нам, що світло не може бути одночасно і хвилею, і частинкою. Утім, попри підказки здорового глузду й незалежно від того, подобається нам це чи ні, експерименти показують, що саме так воно і є. На відміну від складеного в V столітті символу віри, цей факт є не лише справою семантики, вибору чи віри. Тож нам немає потреби щотижня декламувати символи віри квантової механіки, аби вони видавалися менш химерними чи більш правдоподібними.

Ми чуємо про «інтерпретації квантової механіки» з вагомої причини: «класична» картина реальності, тобто картина, створена Ньютоновими законами класичного руху світу в тому вигляді, який ми сприймаємо в людських масштабах, не годиться для охоплення всієї картини. Поверхневий світ, який ми сприймаємо, приховує ключові аспекти процесів, які лежать в основі феноменів, що ми їх спостерігаємо. Так само Платонові філософи не могли відкрити біологічні процеси, що керують людьми, лише спостерігаючи за тінями людей на стіні. Будь-який рівень аналізу навряд чи дав би їм змогу інтуїтивно вирахувати повну реальність, приховану за темними формами.

Квантовий світ відкидає наші поняття про те, що є осмисленим або навіть узагалі можливим. Він каже, що в малих масштабах та впродовж коротких періодів часу проста класична поведінка макроскопічних об’єктів – наприклад, бейсбольних м’ячів, які пітчер кидає кетчеру, – просто-таки ламається. Натомість у малих масштабах об’єкти демонструють багато різних класичних поведінок, а також класично недопустимих поведінок одночасно.

Квантова механіка, як і майже вся фізика з часів Платона, почалася з роздумів науковців про світло. Тому розпочати вивчення квантового божевілля доречно саме зі світла, цього разу повернувшись до важливого експерименту, який уперше описав британський полімат[5] Томас Юнґ на початку ХІХ століття, а саме знаменитого «експерименту з двома щілинами».

Юнґ жив в епоху, яку сьогодні дуже важко собі уявити; у ті часи розумна та працьовита особа могла зробити прориви одразу в безлічі різних сфер. Проте Юнґ був не просто розумною та працьовитою особою. Він був вундеркіндом, який у два роки навчився читати, а до тринадцяти років прочитав найвідоміші грецькі й римські епоси, збудував мікроскоп і телескоп та вивчав одразу чотири мови. Пізніше, 1806 року, маючи лікарський фах, Юнґ першим запропонував сучасну концепцію енергії, яка нині пронизує всі сфери наукового пошуку. Цього вже вистачило б, щоб він увійшов в історію, проте у вільний від роботи час Юнґ одним із перших допомагав розшифрувати ієрогліфи на Розетському камені. Він розробив фізику еластичних матеріалів, пов’язану з тим, що нині зветься модулем Юнґа, і першим пролив світло на фізіологію кольорового зору. А його дивна демонстрація хвильової природи світла (яка йшла врозріз з авторитетним твердженням Ісаака Ньютона, що світло складається з частинок) була настільки захопливою, що допомогла Максвеллу закласти підвалини відкриття електромагнітних хвиль.

Експеримент Юнґа дуже простий. Повернімося до Платонової печери та уявімо собі екран, розташований перед її задньою стінкою. Зробімо в екрані дві щілини, як показано нижче (вигляд згори):


Якщо світло складається з частинок, тоді промені світла, що пройдуть крізь щілини, утворять на стіні поза ними дві світлі лінії:


Проте було добре відомо, що хвилі, на відміну від частинок, в околах бар’єрів та вузьких щілин дифрагують і утворили б на стіні зовсім інше зображення. Якщо хвилі натикаються на бар’єр і якщо кожна зі щілин достатньо вузька, на кожній із них утворюються хвилі, що розходяться колом, і ці хвилі з двох щілин «втручатимуться»[6] одна в одну, подеколи конструктивно, а подеколи деструктивно. У результаті на задній стінці утворюється фігура зі світлих та темних ділянок, як показано нижче:


Використовуючи простий пристрій із вузькими щілинами, Юнґ описав цю інтерференційну фігуру та характеристики хвиль і дуже переконливо продемонстрував хвильову природу світла. Ця подія 1804 року стала віхою в історії фізики.

Можна спробувати відтворити експеримент Юнґа, узявши замість світла елементарні частинки на кшталт електронів. Якщо направити пучок електронів на фосфоресцентний екран, як ті, що в старих телевізорах, у місці зіткнення променя з екраном побачимо яскраву цятку.

Тепер уявімо, що ми помістили перед екраном дві щілини, як Юнґ перед світлом, і спрямуємо на екран широкий пучок електронів:


Послуговуючись обґрунтуванням, яке я навів під час обговорення поведінки світла, природно було б очікувати побачити світлі смуги за кожною зі щілин, через які електрони можуть потрапити на екран. Утім, як ви вже, можливо, здогадалися, побачите зовсім не це, принаймні якщо щілини достатньо вузькі й достатньо близькі одна до одної. Натомість ви побачите інтерференційну фігуру, подібну до тієї, яку побачив Юнґ у випадку світлових хвиль. Схоже, що електрони, які є частинками, у цьому випадку поводяться точно як світлові хвилі. У квантовій механіці частинки мають хвилеподібні властивості.

Те, що електронні «хвилі» з однієї щілини можуть інтерферувати з електронними «хвилями» з іншої щілини, несподівано та дивно, проте аж ніяк не настільки дивно, як те, що станеться, якщо спрямовувати електрони на екран поодинці. Навіть у цьому випадку на екрані вибудовується фігура, ідентична до інтерференційної. Якимось чином кожен електрон інтерферує із самим собою. Електрони не більярдні кулі.

Це можна зрозуміти так: імовірність зіткнення електрона з екраном у кожній точці визначається шляхом сприйняття кожного електрона як такого, що рухається не якоюсь однією траєкторією, а одночасно багатьма різними траєкторіями, деякі з яких проходять крізь першу щілину, а деякі інші – через другу. Тоді ті, що проходять крізь першу щілину, інтерферують із тими, що проходять крізь другу, породжуючи на екрані спостережувану інтерференційну фігуру.

Простіше кажучи, не можна сказати, що електрон проходить крізь першу або крізь другу щілину, як це робила б більярдна куля. Натомість він не проходить крізь жодну, водночас проходячи крізь обидві.

«Маячня», – скажете ви. І запропонуєте варіант експерименту, щоб це довести. Поставимо на кожну щілину електронно-вимірювальний пристрій, який клацатиме щоразу, як через цю щілину пролітатиме електрон.

Проте якщо тепер поглянути на фігуру з електронів, що накопичуються на екрані поза щілинами, замість початкової інтерференційної фігури ми побачимо фігуру, яку очікували від самого початку: зі світлими ділянками поза кожною зі щілин, точно як у випадку, якби ми обстрілювали екран більярдними кулями чи снарядами.

Іншими словами, спробувавши перевірити своє класичне передбачення, ви змінили поведінку електронів. Або, як зазвичай постулюється у квантовій механіці, вимірювання системи може змінювати її поведінку.

Один із багатьох на перший погляд неможливих аспектів квантової механіки полягає в тому, що неможливо провести жодного експерименту, який демонструє, що за відсутності вимірювання електрони поводяться осмисленим класичним чином.

Ця дивна хвилеподібна природа об’єктів, які в іншому разі вважали б частинками на кшталт електронів, математично виражається шляхом присвоєння кожному електрону «хвильової функції», яка описує ймовірність виявлення цього електрона в будь-якій поданій точці. Якщо хвильова функція приймає ненульові значення в багатьох різних точках, то положення електрона не може бути ізольоване заздалегідь до точного вимірювання його положення. Іншими словами, існує ненульова ймовірність, що перед вимірюванням електрон насправді не локалізується в якійсь одній конкретній точці в просторі.

Хоча можна подумати, що це лише проблема відсутності доступу до всієї інформації, потрібної для знаходження частинки до здійснення вимірювання, експеримент Юнґа з двома щілинами, застосований до електронів, показує, що це абсолютно точно не так. Будь-яка «осмислена» класична картина того, що відбувається між вимірюваннями, не відповідає даним.

* * *

Дивна поведінка електронів була не першим свідченням того, що мікроскопічний світ не можна зрозуміти за допомогою інтуїтивної класичної логіки. І знов-таки, продовжуючи традицію революційних проривів у нашому розумінні природи з часів Платона, відкриття квантової механіки почалося з вивчення світла.

Згадаймо, що якщо провести Юнґів експеримент із двома щілинами над світловими променями в Платоновій печері, то матимемо на стіні інтерференційну фігуру, яку відкрив Юнґ, котра демонструє, що світло дійсно є хвилею. Поки що все добре. Утім, якщо джерело світла достатньо слабке, то, якщо ми спробуємо засікти світло під час проходження через якусь зі щілин, станеться дуже дивна річ. Згідно з нашими вимірюваннями, промінь світла проходитиме через першу або через другу щілину, проте не через обидві. І, як й у випадку з електронами, у цьому разі фігура на стіні зміниться й виглядатиме так, як виглядала б, якби світло складалося з частинок, а не хвиль.

Фактично світло також поводиться і як частинка, і як хвиля залежно від обставин, за яких ви вирішите його вимірювати. Окремі частинки світла, які ми нині називаємо фотонами, вперше назвав квантами німецький фізик-теоретик Макс Планк, який 1900 року висунув твердження, що існує якась найменша порція світла, яка може бути випромінена чи поглинена (хоча ідею, що світло може складатися з дискретних пакетів, висунув іще раніше, 1877 року, видатнй Людвіг Больцман).

Чим більше я дізнавався про життя Планка, тим більше його поважав. Як Ейнштейн, він був безоплатним лектором, і після захисту дисертації йому не запропонували академічної посади. Цей період своєї кар’єри Планк присвятив намаганням зрозуміти природу тепла та створив кілька важливих праць із термодинаміки. Через п’ять років після захисту дисертації йому врешті-решт запропонували університетську посаду, після чого Планк швидко піднявся кар’єрними щаблями й 1892 року став штатним професором престижного Берлінського університету.

1894 року Макс Планк звернувся до питання природи світла, випромінюваного гарячими об’єктами, почасти з комерційних міркувань (перший на моїй пам’яті приклад у моїй оповіді, коли фундаментальна фізика була комерційно вмотивована). Йому замовили вивчити, як видобути максимальну кількість світла з нещодавно винайдених лампочок розжарювання, використовуючи при цьому мінімальну кількість енергії.

Усі ми знаємо, що в процесі розігрівання спіралі духовки вона спершу світиться червоним, а коли стає ще гарячішою, починає світитися синім. Але чому? Як не дивно, традиційні підходи до цієї проблеми були нездатні відтворити ці спостереження. Віддавши цій проблемі шість років, Планк презентував революційну здогадку про випромінювання, яка узгоджувалася зі спостереженнями.

Спершу нічого революційного в його виведеннях не було, але через два місяці вчений переглянув свій аналіз, аби охопити ідеї про те, що відбувається на фундаментальному рівні. За висловом самого Планка, уперше прочитавши який, я одразу ж його полюбив, його новий підхід виник як «жест відчаю… я був ладен пожертвувати всіма своїми попередніми переконаннями щодо фізики».

Для мене це є відображенням фундаментальної якості, яка робить науковий процес настільки ефективним і яка настільки яскраво проявилася в розвитку квантової механіки. «Попередні переконання» – лише переконання, що чекають на спростування; якщо потрібно, емпіричними даними. Якщо такі любі нам колишні поняття не працюють, ми викидаємо їх, наче вчорашню газету. А для пояснення природи виділеного матерією випромінювання вони не працювали.

Планк вивів свій закон випромінювання з фундаментального припущення, що світло, яке є хвилею, виділяється лише «пакетами» деякої мінімальної кількості енергії, пропорційної частоті цього випромінювання. Він позначив константу, яка пов’язувала енергію з частотою, «квантом дії»; нині вона називається сталою Планка.

Можливо, це не звучить дуже вже революційно і, як і Фарадей у випадку з електричними полями, Планк розглядав своє припущення лише як формальну математичну милицю для свого аналізу. Пізніше він проголошував: «Узагалі-то я багато про це не думав». Утім, гадку, що світло випромінюється у вигляді частинкоподібних пакетів, вочевидь важко узгодити з класичним уявленням про світло як хвилю. Енергія, що переноситься хвилею, невигадливо пов’язана з величиною її коливань, яка може неперервно змінюватися, починаючи від нуля. Проте, за Планком, кількість енергії, яку можна випромінити у світловій хвилі певної частоти, має абсолютний мінімум. Цей мінімум було названо квантом енергії.

Далі Планк спробував виробити класичне фізичне розуміння цих квантів енергії, проте зазнав невдачі, що завдало йому, за його власними словами, «великої прикрості». Утім, на відміну від деяких колег, він усвідомлював, що всесвіт існує не для того, щоб полегшувати життя. Так, стосовно фізика й астронома сера Джеймса Джинса, який не бажав відкинути класичні поняття перед лицем наданих випромінюванням свідчень, Планк зазначав: «Я не можу зрозуміти Джинсової впертості; він є прикладом теоретика, який ніколи не мав би існувати, точно як Геґель у філософії. Якщо факти не відповідають теорії, тим гірше для фактів» (про всяк випадок, якщо читачі відчують бажання написати мені листи, цей наклеп на Геґеля звів Планк, а не я!).

Пізніше Планк потоваришував з іншим фізиком, який дозволив фактам привести себе до іншої революційної ідеї – Альбертом Ейнштейном. 1914 року, коли Планк став деканом Берлінського університету, він організував для Ейнштейна нову посаду професора. Спершу Планк не міг прийняти видатний здогад Ейнштейна, який той висловив 1905-го, – того ж року, коли запропонував спеціальну теорію відносності, – що світло не лише випромінюється матерією у вигляді квантових пакетів, а що промені світла як такі існують у вигляді наборів цих квантів, тобто що світло як таке складається з частинкоподібних об’єктів, які ми нині називаємо фотонами.

Ейнштейн дійшов до цієї думки, намагаючись пояснити феномен під назвою «фотоелектричний ефект», що його відкрив 1902 року Філіпп Ленард – фізик, чий антисемітизм пізніше відіграє ключову роль у відтермінуванні присудження Ейнштейну Нобелівської премії і, що цікаво й навіть поетично, приведе до того, що науковець отримає її не за свою роботу над теорією відносності, а саме за фотоелектричний ефект. Фотоелектричний ефект полягає в тому, що світло, спрямоване на металеву поверхню, може вибивати з атомів електрони й породжувати струм. Проте яким би інтенсивним не було світло, якщо його частота нижча за деякий поріг, жоден електрон не вибивається. Але щойно частота перевищує цей поріг, виникає фотоелектричний струм.

Ейнштейн збагнув, що це можна пояснити, якщо світло поширюється у вигляді мінімальних пакетів енергії, пропорційної частоті світла, як постулював Планк для світла, випроміненого матерією. У цьому випадку лише світло з частотами, що перевищують деяку граничну величину, може містити достатню кількість енергетичних квантів, щоб вибити електрони з атомів.

Планк міг сприйняти квантифікований випуск випромінювання як пояснення свого закону випромінювання, проте припущення, що квантоподібним (себто частинкоподібним) є світло як таке, було настільки чужорідним для звичного розуміння світла як електромагнітної хвилі, що Планк уперся. Лише шість років по тому, на конференції в Бельгії, на одному із Сольвеївських конгресів, які пізніше стали знаменитими, Ейнштейну врешті-решт вдалося переконати Планка, що класичну картину світла слід відкинути й що кванти (вони ж фотони) дійсно існують.

Також Ейнштейн був першим, хто на практиці використав факт, який пізніше відкинув у своєму знаменитому твердженні, що висміювало ймовірнісну сутність квантової механіки й реальності: «Бог не грає в кості зі всесвітом». Він показав, що, якщо атоми спонтанно (себто без безпосередньої причини) поглинають та випускають скінченні пакети випромінювання в міру того, як електрони перестрибують з одного дискретного енергетичного рівня атомів на інший, він може перевивести закон випромінювання Планка.

За іронією долі Ейнштейн, який започаткував квантову революцію, проте так до неї й не долучився, також, схоже, був першим, хто використав імовірнісні аргументи для опису природи матерії – стратегію, яку наступні фізики, котрі обернули квантову механіку на повноцінну теорію, поставлять на перше місце. Унаслідок цього Ейнштейн став одним із перших фізиків, хто продемонстрував, що Бог грає

5

Людина, чиї досвід і знання охоплюють значну кількість різних предметних галузей.

6

Англійською «interfere» – звідси фізичний термін «інтерференція».

Таємниці походження всесвіту

Подняться наверх