Читать книгу Global Navigation Satellite Systems, Inertial Navigation, and Integration - Mohinder S. Grewal - Страница 4
List of Illustrations
Оглавление1 Chapter 2Figure 2.1 Parameters defining satellite orbit geometry.Figure 2.2 Six GPS orbit planes inclined 55° from the equatorial plane.Figure 2.3 Two transmitters with known 2D positions.Figure 2.4 DOP hierarchy.
2 Chapter 3Figure 3.1 Inertial sensor assembly (ISA) components.Figure 3.2 Inertially stabilized IMU alternatives.Figure 3.3 Tuning fork gyroscope.Figure 3.4 MEMS tuning fork gyroscope.Figure 3.5 Common input–output error types.Figure 3.6 Gyro error compensation example.Figure 3.7 Directions of modeled sensor cluster errors.Figure 3.8 Equipotential surface models for Earth.Figure 3.9 WGS84 geoid heights.Figure 3.10 Ellipse and osculating circles.Figure 3.11 Transverse osculating circle.Figure 3.12 Radii of WGS84 reference ellipsoid.Figure 3.13 Gyrocompassing determines sensor orientations with respect to east...Figure 3.14 Strapdown attitude representations.Figure 3.15 Coning motion.Figure 3.16 Coning error for 1° cone angle, 1 kHz coning rate.Figure 3.17 Rotation vector representing coordinate transformation.Figure 3.18 Coordinates for strapdown navigation with whole‐angle gyroscopes.Figure 3.19 Attitude representation formats and MATLAB® transformations.Figure 3.20 Simplified control flow diagram for three gimbals.Figure 3.21 Essential navigation signal processing for strapdown INS.Figure 3.22 Outputs (in angular brackets) of simple strapdown INS.Figure 3.23 Essential navigation signal processing for gimbaled INS.
3 Chapter 4Figure 4.1 Block diagram of GPS signal generation at L1 and L2 frequencies. No...Figure 4.2 GPS C/A signal structure at L1 generation illustration.Figure 4.3 GPS P(Y) signal structure at L1 generation illustration.Figure 4.4 GPS navigation data format (legacy) frame structure. a Same data tran...Figure 4.5 Relationship between GPS HOW counts and TOW counts [2].Figure 4.6 Geometric relationship between true anomaly v and eccentric anomaly...Figure 4.7 Illustration of autocorrelation functions of GPS PRN codes.Figure 4.8 Illustration of power spectrum of GPS spreading codes.Figure 4.9 Despreading of the spreading code.Figure 4.10 A modernized GPS signal spectrum. psd, power spectral density.Figure 4.11 A Galileo signal spectrum. psd, power spectral density.
4 Chapter 5Figure 5.1 Illustration of GNSS frequency and bandwidth (BW) for various GNSSs...Figure 5.2 Antenna configuration for reception of a GNSS RHCP signal. (a) Top ...Figure 5.3 Illustration of a GNSS antenna bandwidth using a 2.0 : 1.0 SWR metr...Figure 5.4 Patch antenna aviation form factors (with radome) [14].Figure 5.5 Illustration of a single‐frequency edge‐fed patch antenna. (a) Edge...Figure 5.6 Passive probe‐fed patch antenna with a coaxial/connector output.Figure 5.7 Probe‐fed patch antenna with capacitive coupler ring.Figure 5.8 Dual probe‐fed patch antenna with separate quadrature power combine...Figure 5.9 Photograph of a low‐cost active single‐frequency probe‐fed RHCP GPS...Figure 5.10 Dual probe‐fed, RHCP, multifrequency GNSS patch antenna.Figure 5.11 Typical choke ring‐based GNSS antenna configuration.Figure 5.12 Photograph of a 3D choke ring [30].Figure 5.13 Spiral GNSS antenna (spiral and can only) [31].Figure 5.14 GNSS‐850 antenna (radome removed) plane [34].Figure 5.15 Typical radiation characteristics of the wideband GNSS‐850 antenna...Figure 5.16 General block diagram of a GNSS adaptive antenna array.Figure 5.17 Illustration of theoretical seven‐element CRPA array factor (with ...
5 Chapter 6Figure 6.1 Generic block diagram of GNSS receiver. PR: pseudorange; CP: carri...Figure 6.2 Generic GNSS receiver RF front end and IF signal conditioning circ...Figure 6.3 Signal search method.Figure 6.4 Sequential frequency search strategy.Figure 6.5 Illustration of tradeoff between P D and P FA.Figure 6.6 Global and confirmation search regions.Figure 6.7 Generic GNSS receiver code tracking loop.Figure 6.8 Code tracking loop error signal (open loop).Figure 6.9 Generic GNSS receiver carrier tracking loop.Figure 6.10 Pseudorange measurement concept.Figure 6.11 Theoretically achievable C/A‐code pseudorange error.Figure 6.12 Theoretically achievable carrier phase measurement error.Figure 6.13 Theoretically achievable frequency estimation error.
6 Chapter 7Figure 7.1 Bilinear interpolation.Figure 7.2 Effect of multipath on C/A‐code cross‐correlation function.Figure 7.3 Reduced multipath error with larger precorrelation bandwidth.Figure 7.4 Multipath‐mitigating reference code waveform.Figure 7.5 Compression of the received signal.Figure 7.6 Performance of various multipath mitigation approaches.Figure 7.7 Residual multipath phase error using MMT algorithm.Figure 7.8 Schematic of a rubidium atomic clock. RF: radio frequency.Figure 7.9 Crystal clock error model.Figure 7.10 GPS UERE budget.
7 Chapter 8Figure 8.1 WAAS top‐level view.Figure 8.2 European Global Navigation Overlay System architecture.Figure 8.3 Current and planned SBAS service areas.Figure 8.4 GCCS top‐level view. TLT: test loop translator; KPA: Klystron power...Figure 8.5 Primary GEO uplink subsystem type (GUST) control loop functional bl...Figure 8.6 Control loop test setup. AIX = IBM Advanced Interactive eXecutive P...Figure 8.7 Primary GUS clock steering.Figure 8.8 Backup GUS clock steering.Figure 8.9 Relationship between UDRE and GDOP.Figure 8.10 Local‐area augmentation system (LAAS). VDB: very high frequency da...
8 Chapter 9Figure 9.1 Test statistic plane for the six satellites in view.Figure 9.2 Integrity mitigation within an SBAS.
9 Chapter 10Figure 10.1 Top‐level date flow diagram of Kalman filter implementation.Figure 10.2 Linearization error analysis of pseudorange measurements.Figure 10.3 Sigma‐points for .Figure 10.4 Simulated innovations monitoring.Figure 10.5 Sample subplot output from
avRMStestfunction.m
, showing RMS unce...Figure 10.6 Pseudorange measurement geometry.10 Chapter 11Figure 11.1 Misalignment of INS navigation coordinates.Figure 11.2 Effects of INS position errors.Figure 11.3 INS navigation solution flowchart.Figure 11.4 Velocity leveling for terrestrial navigation.Figure 11.5 Growth of vertical channel errors over 10 hours.Figure 11.6 CEP plot from m‐file F10CEPrate.m.Figure 11.7 Schuler/Coriolis demonstration using seven‐state horizontal error ...Figure 11.8 PSDs of common sensor noise models.Figure 11.9 Estimated CEP rate versus gyro and accelerometer noise.Figure 11.10 CEP slope versus accelerometer compensation drift parameters, bas...
11 Chapter 12Figure 12.1 Loosely and tightly coupled implementations.Figure 12.2 Block structure of dynamic coefficient matrix.Figure 12.3 Dynamic conditions on 100‐km figure‐8 test track.Figure 12.4 GNSS navigation geometry.Figure 12.5 GNSS‐only navigation simulation results.Figure 12.6 INS‐only navigation simulation results.Figure 12.7 Integrated GNSS/INS navigation simulation results.
12 2Figure B.1 Earth‐centered inertial (ECI) coordinates.Figure B.2 Cartesian & polar coordinates.Figure B.3 Celestial coordinates.Figure B.4 Keplerian Parameters for Satellite OrbitFigure B.5 ECI and ECEF coordinates.Figure B.6 Geocentric, parametric, and geodetic latitudes in meridional plane.Figure B.7 ENU coordinates.Figure B.8 Alpha wander.Figure B.9 Roll–pitch–yaw axes.Figure B.10 Vehicle Euler angles.Figure B.11 Pseudorange.Figure B.12 Satellite coordinates.Figure B.13 Rotation from ENU to NED coordinates.Figure B.14 MATLAB® transformations of coordinate representations.Figure B.15 Rotating coordinates.
13 3Figure C.1 Ten different univariate PDFs with common means and variance .Figure C.2 Identical results from all 10 PDFs.Figure C.3 Sampling of nonlinear functions used.Figure C.4 PDF‐dependent mean variations from symmetric nonlinearities.Figure C.5 PDF‐dependent mean variations from antisymmetric nonlinearities.Figure C.6 PDF‐dependent variance variations from symmetric nonlinearities.Figure C.7 PDF‐dependent variance variations from antisymmetric nonlinearities...