Читать книгу Биология. Общие закономерности. 9 класс - Н. И. Сонин - Страница 12
Раздел 1. Структурная организация живых организмов
Глава 4. Строение и функции клеток
6. Эукариотическая клетка. Цитоплазма
ОглавлениеВспомните!
• Одноклеточные организмы • Многоклеточные организмы
• Клеточная мембрана • Полупроницаемость • Органоиды
• Пиноцитоз • Фагоцитоз
Эукариотические клетки самых разнообразных организмов – от простейших (корненожки, жгутиковые, инфузории и др.) до грибов, высших растений и животных – отличаются формой, размерами и особенностями строения (рис. 10). Типичной клетки в природе не существует, но у тысяч различных типов клеток можно выделить общие черты строения (рис. 11).
В растительной клетке есть все органоиды, свойственные и животной клетке: ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Вместе с тем она отличается от животной клетки существенными особенностями строения: 1) прочной клеточной стенкой; 2) особыми органоидами – пластидами, в которых происходит первичный синтез органических веществ за счёт энергии света; 3) развитой системой вакуолей, в значительной мере обусловливающих осмотические свойства клеток.
Каждая клетка состоит из двух важнейших, неразрывно связанных между собой частей – цитоплазмы и ядра, окружённых наружной мембраной.
Цитоплазма. В цитоплазме находится целый ряд структур (органелл, или органоидов), каждая из которых отличается особенностями строения и выполняет определённую функцию. Есть органоиды, свойственные всем клеткам, – митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматическая сеть, лизосомы. Другие органоиды встречаются только в клетках определённого типа – миофибриллы, реснички и т. д.
Рис. 10. Форма клеток: А – нервная клетка; Б – Г – эпителиальные клетки; Д – соединительнотканная клетка; Е – яйцеклетка; Ж – мышечная клетка
В цитоплазме откладываются также различные вещества – их называют включениями. Это непостоянные структуры цитоплазмы (а иногда и ядра), которые, в отличие от органоидов, то возникают, то исчезают в процессе жизнедеятельности клетки. Плотные включения называют гранулами. В процессе жизнедеятельности в клетках накапливаются продукты обмена веществ (пигменты, белковые гранулы в секреторных клетках) или запасные питательные вещества (глыбки гликогена, капли жира).
В основе структурной организации клетки лежит мембранный принцип строения. Все мембраны клетки имеют сходное строение. Они образованы двумя рядами фосфолипидов, в которые на разную глубину с наружной и внутренней стороны погружены многочисленные и разнообразные молекулы белков.
Рис. 11. Схема строения животной и растительной клеток
Наружная цитоплазматическая мембрана отграничивает содержимое цитоплазмы от внешней среды. Поверхность живой клетки находится в непрерывном движении: на ней возникают выросты и впячивания, она совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.
Рис. 12. Схема проникновения веществ в клетку и внутриклеточное пищеварение: 1 – фагоцитоз; 2 – пиноцитоз; 3 – наружная мембрана; 4 – эндоплазматическая сеть; 5 – аппарат Гольджи и лизосомы; 6 – слияние лизосомы с пино– или фагоцитозной вакуолью; 7 – подготовка к перевариванию структур клетки; 8 – пищеварительная вакуоль; 9 – удаление непереваренных остатков
Поверхность клетки обладает высокой прочностью и эластичностью, легко и быстро восстанавливает свою целостность при небольших повреждениях. Однако цитоплазматическая мембрана несплошная: она пронизана многочисленными мельчайшими отверстиями – порами, через которые с помощью ферментов внутрь клетки могут проникать ионы и мелкие молекулы. К тому же они могут попадать в клетку и непосредственно через мембрану, причём это не пассивная диффузия, а активный избирательный процесс, требующий затрат энергии.
Клеточная мембрана легко проницаема для одних веществ и непроницаема для других. Так, концентрация ионов К+ в клетке всегда выше, чем в окружающей среде. Напротив, ионов Na+ всегда больше в межклеточной жидкости. Избирательная проницаемость клеточной мембраны носит название полупроницаемости.
Помимо указанных двух способов, химические соединения и твёрдые частицы могут проникать в клетку путём пино– и фагоцитоза (рис. 12). Мембрана клеток образует выпячивания, края выпячиваний смыкаются, захватывая межклеточную жидкость (пиноцитоз) или твёрдые частицы (фагоцитоз).
Цитоплазматическая мембрана выполняет ещё одну функцию – обеспечивает связь между клетками в тканях многоклеточных организмов: во-первых, путём образования многочисленных складок и выростов, во-вторых, за счёт выделения клетками вещества, заполняющего межклеточное пространство.
У растительной клетки, в отличие от животной, снаружи от цитоплазматической мембраны расположена толстая, состоящая из целлюлозы клеточная стенка.
Клетки грибов, как и растений, окружены клеточной стенкой, но она образована не целлюлозой, а хитиноподобным веществом.
Эндоплазматическая сеть – это сложная система мембран, пронизывающая цитоплазму всех эукариотических клеток; у прокариот её нет.
Различают два вида эндоплазматической сети: гладкую и шероховатую. Одной из функций гладкой эндоплазматической сети является синтез липидов и углеводов. Особенно обильно гладкая эндоплазматическая сеть представлена в клетках сальных желёз (синтез жиров), в клетках печени (синтез гликогена), в клетках, богатых запасными питательными веществами (семена растений).
На каналах шероховатой эндоплазматической сети расположены рибосомы, синтезирующие белок.
Таким образом, эндоплазматическая сеть – общая внутриклеточная циркуляционная система, по каналам которой осуществляется транспорт веществ, а в мембраны этих каналов встроены многочисленные ферменты, обеспечивающие жизнедеятельность клетки.
Соседние растительные клетки сообщаются друг с другом посредством каналов эндоплазматической сети, которые переходят из клетки в клетку по цитоплазматическим тяжам через поры в клеточной стенке.
Рибосомы представляют собой тельца, состоящие из двух субъединиц (см. рис. 5, 6). В рибосомах примерно равное количество белка и РНК. Рибосомальная РНК (рРНК) синтезируется в ядре на молекуле ДНК в зоне ядрышка. Там же формируются рибосомы, которые затем покидают ядро.
В цитоплазме рибосомы могут располагаться свободно или прикрепляться к наружной поверхности мембран эндоплазматической сети. Рибосомы есть во всех клетках, как прокариотических, так и эукариотических.
Основной структурный элемент комплекса (аппарата) Гольджи – гладкая мембрана, которая образует пакеты уплощённых цистерн, крупные вакуоли или мелкие пузырьки (см. рис. 11). Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу Гольджи, конденсируются внутри его структур и «упаковываются» в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.
Рис. 13. Образование лизосом в аппарате Гольджи
Лизосомы (от греч. лизис – расщепление) – небольшие мембранные пузырьки, которые образуются в основном в комплексе Гольджи (рис. 13). Они заполнены пищеварительными ферментами, способными расщеплять различные вещества. Они приближаются к пиноцитозным или фагоцитозным вакуолям и сливаются с ними (см. рис. 12). Кроме того, лизосомы могут разрушать структуры самой клетки при их старении, в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные (см. ниже), и в ряде других случаев.
Митохондрии имеются во всех эукариотических клетках одноклеточных и многоклеточных организмов. Такое распространение митохондрий в животном и растительном мире указывает на важную роль, которую они играют в клетке.
Число митохондрий в разных тканях неодинаково и зависит от активности клетки: их больше там, где интенсивнее синтетические процессы (печень) или велики затраты энергии. Так, в грудной мышце у летающих птиц содержание митохондрий значительно выше, чем у нелетающих.
Стенка митохондрии состоит из двух мембран: наружной и внутренней. Наружная мембрана гладкая, а внутренняя образует складки, или кристы. На мембранах крист располагаются многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий – синтез универсального источника энергии – АТФ.
Пластиды – органоиды растительных клеток. В них происходит первичный синтез углеводов из неорганических веществ. Различают три вида пластид: 1) лейкопласты – бесцветные пластиды, в которых из моносахаридов и дисахаридов синтезируется крахмал (есть лейкопласты, запасающие белки или жиры); 2) хлоропласты – зелёные пластиды, содержащие пигмент хлорофилл, где осуществляется фотосинтез; 3) хромопласты, включающие различные пигменты из группы каротиноидов, обусловливающих яркую окраску цветков и плодов. Пластиды могут превращаться друг в друга. Пластиды содержат собственные ДНК и РНК, способные синтезировать белки, и размножаются делением надвое.
Вакуоли растительных клеток – это мембранные органоиды. Они образуются из цистерн эндоплазматической сети. Вакуоли содержат в растворённом виде белки, углеводы, низкомолекулярные продукты синтеза, витамины, различные соли. Осмотическое давление, создаваемое растворёнными в вакуолярном соке веществами, приводит к тому, что в клетку поступает вода, которая обусловливает тургор – напряжённое состояние клеточной стенки. Это обеспечивает прочность растений к статическим и динамическим нагрузкам.
Клеточный центр состоит из двух маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называют центриолями (см. рис. 11). Клеточный центр играет важную роль в клеточном делении: перед началом деления центриоли расходятся к полюсам клетки и удваиваются. Затем от центриолей начинается рост веретена деления. В растительных клетках центриолей нет, и веретено деления образуется без их участия.
Цитоскелет. Одной из отличительных особенностей эукариотической клетки является наличие в её цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Опорные элементы цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.
Вопросы для повторения и задания
1. Изобразите схематично строение эукариотической клетки. Обозначьте её основные части и органоиды.
2. Составьте и заполните таблицу «Органоиды эукариотической клетки и их функции».
3. Что такое включения? Чем включения отличаются от органоидов?
4. Сравните принципиальное строение растительной и животной клеток. В чём их сходство и отличия?
5. Выскажите предположение, какие органоиды эукариотической клетки называют полуавтономными. Почему они получили такое название?
6. Приведите доказательства, что клетка представляет собой целостную систему, т. е. такую систему, в которой строение и функции каждой её части зависят от других частей.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
• Найдите в Интернете сайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.
• Подготовьтесь к следующему уроку. Используя дополнительные источники информации (книги, статьи, ресурсы сети Интернет и др.), сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.