Читать книгу Биология. Общие закономерности. 9 класс - Н. И. Сонин - Страница 9
Раздел 1. Структурная организация живых организмов
Глава 3. Обмен веществ и преобразование энергии в клетке
4. Энергетический обмен. Способы питания
ОглавлениеВспомните!
• Брожение • Дыхание • Нитрифицирующие бактерии
• Фотосинтез • Хемосинтез • Фототрофы • Хемотрофы
• Митохондрии
Процессом, противоположным синтезу, является диссимиляция – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют ещё энергетическим обменом клетки.
Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. В глюкозе количество потенциальной энергии, заключённой в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. на 180 г глюкозы). При расщеплении глюкозы энергия выделяется поэтапно при участии ряда ферментов:
С6Н12O6 + 6O2 → 6Н2O + 6СO2 + 2800 кДж.
Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается, в богатых энергией фосфатных связях аденозинтрифосфорной кислоты (АТФ). Именно АТФ обеспечивает энергией все клеточные функции: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.
Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трёх остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоёмка. Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж, а не 12 кДж энергии, как при разрыве обычных химических связей. Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии и расходовать её по мере надобности. Синтез АТФ осуществляется главным образом в специальных органоидах клетки – митохондриях (см. § 6, рис. 11). Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.
Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди– и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. При этом выделяется небольшое количество энергии, которая рассеивается в виде теплоты.
Второй этап – бескислородный, осуществляющийся в цитоплазме клеток. Он называется также анаэробным дыханием (гликолизом) или брожением. Термин «брожение» обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение).
У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.
В мышцах в результате анаэробного (бескислородного) дыхания одна молекула глюкозы распадается на две молекулы молочной кислоты. В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.
Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, а остальная рассеивается в виде теплоты.
Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления, реакции которой также катализируются ферментами. При доступе кислорода образовавшиеся в клетке во время предыдущего этапа вещества окисляются до конечных продуктов – Н2O и СO2. Это сопровождается выделением большого количества энергии и аккумуляцией её в молекулах АТФ – при окислении двух молекул молочной кислоты образуется 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.
Способы питания. В процессе питания организмы получают химические соединения, используемые в дальнейшем для всех процессов жизнедеятельности. По способу получения органических веществ, т. е. по способу питания, все организмы делятся на две группы: автотрофные и гетеротрофные.
Автотрофы – это организмы, которые способны сами синтезировать необходимые им органические вещества, получая из окружающей среды углерод в виде СO2, воду и минеральные соли. К ним относятся некоторые бактерии и все зелёные растения.
В зависимости от того, какой источник энергии автотрофные организмы используют для синтеза органических соединений, их делят на две группы: фототрофы и хемотрофы. Для фототрофов источником энергии служит свет, а хемотрофы используют энергию, освобождающуюся при окислительно-восстановительных реакциях.
Зелёные растения – фототрофы. При помощи содержащегося в хлоропластах хлорофилла они осуществляют фотосинтез – преобразование световой энергии в энергию химических связей. Происходит это следующим образом. Кванты света – фотоны – взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией «возбуждённое» состояние. Стремясь вернуться в исходное состояние, молекулы хлорофилла отдают эту избыточную энергию, которая частично переходит в тепловую. Другая часть избыточной энергии запасается в виде АТФ, т. е. накапливается энергия, необходимая для дальнейших реакций.
В водном растворе всегда присутствуют ионы водорода (Н+) и гидроксид-ионы (ОН−). Часть избыточной энергии возбуждённых молекул хлорофилла тратится на превращение ионов Н+ в атомы водорода, которые активно соединяются со сложными органическими соединениями – переносчиками водорода. Ионы гидроксила ОН− отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:
4OН → O2 + 2Н2O.
Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является фотолиз – разложение воды под влиянием света. Кроме фотолиза воды, энергия света используется в световой фазе для синтеза АТФ из АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путём накапливается энергия, необходимая для процессов связывания СO2. В этих реакциях участвуют молекулы АТФ и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:
Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.
Некоторые бактерии, лишённые хлорофилла, тоже способны к синтезу органических соединений, при этом они используют энергию химической реакции неорганических веществ. Преобразование энергии химических реакций в химическую энергию синтезируемых органических соединений называют хемосинтезом. К группе автотрофов-хемосинтетиков (хемотрофов) относятся нитрифицирующие бактерии. Некоторые из них используют энергию окисления аммиака в азотистую кислоту, другие – энергию окисления азотистой кислоты в азотную. Известны хемосинтетики, окисляющие двухвалентное железо до трёхвалентного или сероводород до серной кислоты. Фиксируя атмосферный азот, переводя нерастворимые минералы в форму, пригодную для усвоения растениями, хемосинтезирующие бактерии играют важную роль в круговороте веществ в природе.
Организмы, не способные сами синтезировать органические вещества из неорганических, нуждаются в поступлении их из окружающей среды. Эти организмы называют гетеротрофными. К ним относят большинство бактерий, грибы и всех животных.
Вопросы для повторения и задания
1. Что такое диссимиляция?
2. Изобразите схематично этапы энергетического обмена.
3. В чём заключается роль АТФ в клетке?
4. В каких структурах клетки осуществляется синтез АТФ?
5. Сравните известные вам типы питания организмов.
6. Какие организмы называют автотрофными? На какие группы делят автотрофные организмы?
7. Почему в результате фотосинтеза у зелёных растений в атмосферу выделяется свободный кислород?
8. Объясните, почему, несмотря на то что в процессе фотосинтеза синтезируется АТФ, фотосинтез относят к пластическому обмену.
9. Что такое хемосинтез? Расскажите о значении хемосинтезирующих бактерий в природе.
10. Какие организмы называют гетеротрофными? Приведите примеры.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
• Найдите в Интернете сайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.
• Подготовьтесь к следующему уроку. Используя дополнительные источники информации (книги, статьи, ресурсы сети Интернет и др.), сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.