Читать книгу Handbook of Enology, Volume 2 - Pascal Ribéreau-Gayon - Страница 4
List of Illustrations
Оглавление1 Chapter 1FIGURE 1.1 Oxidation–reduction equilibrium of ascorbic acid.FIGURE 1.2 Biosynthesis of oxaloacetic acid from phosphophenolpyruvic acid....FIGURE 1.3 Comparison of the titration curves of a must and the correspondin...FIGURE 1.4 Determining the buffer capacity β from the titration curves ...FIGURE 1.5 Diagram of interactions between amino acids and organic acids tha...FIGURE 1.6 Variations in the buffer capacity of an aqueous solution of tarta...FIGURE 1.7 Variations in the buffer capacity of an aqueous solution of malic...FIGURE 1.8 Hypothetical structure of interactions between tartaric acid and ...FIGURE 1.9 Formation of insoluble calcium tartromalate when calcium tartrate...FIGURE 1.10 Structure of (a) potassium calcium double tartrate and (b) calci...FIGURE 1.11 Determination of the exponential solubility (A) and supersolubil...FIGURE 1.12 Repetitive bubble formation on a microcavity in a tartrate micro...FIGURE 1.13 Diagram illustrating the importance of the diffusion speed of KH...FIGURE 1.14 Experimental determination of the saturation temperature of a wi...FIGURE 1.15 Determining the saturation temperature of a wine according to th...FIGURE 1.16 Crystallization kinetics of potassium bitartrate analyzed by mea...FIGURE 1.17 Schematic diagram of a continuous cold stabilization system: 1, ...FIGURE 1.18 Polyesterification reaction involved in the formation of metatar...FIGURE 1.19 Impurities in metatartaric acid.FIGURE 1.20 Hydrolysis rate of two grades of metatartaric acid in 2% solutio...FIGURE 1.21 HPLC analysis of molecular‐sieved mannoprotein extract obtained ...FIGURE 1.22 HPLC analysis of molecular‐sieved mannoprotein extract obtained ...FIGURE 1.23 Structure of a carboxymethylcellulose (CMC) chain.FIGURE 1.24 Formula for the etherification of celluloses (R–[OH]3) by sodium...FIGURE 1.25 Comparison of the effectiveness of metatartaric acid and carboxy...
2 Chapter 2FIGURE 2.1 Structure of ethanol and definition of the alcohol function.FIGURE 2.2 Reaction between hydrogen sulfide and ethanol.FIGURE 2.3 Oxidation–reduction equilibrium of the thiol/disulfide system.FIGURE 2.4 Biosynthesis of higher alcohols, according to Ehrlich.FIGURE 2.5 Mechanism for the formation of acrolein by double dehydration of ...FIGURE 2.6 Oxidation–reduction equilibria of 2‐3‐butanediol.FIGURE 2.7 Esterification equilibrium of an alcohol.FIGURE 2.8 Biosynthesis mechanism of fatty acids.FIGURE 2.9 Formation of an acetal.FIGURE 2.10 Acetalization of acetaldehyde and formation of diethoxyethane.FIGURE 2.11 Formation of γ‐butyrolactone.FIGURE 2.12 Formation of sotolon in wines.FIGURE 2.13 β ‐Methyl‐γ‐octalactone.
3 Chapter 3FIGURE 3.1 Fischer projection of glucose and fructose.FIGURE 3.2 Intramolecular hemiacetalization reaction with formation of two s...FIGURE 3.3 Conformation equilibrium of α‐D‐glucopyranose.FIGURE 3.4 Epimerization equilibrium of α‐D‐glucopyranose and β‐D‐...FIGURE 3.5 Fischer and Haworth representations of β‐D‐glucofuranose.FIGURE 3.6 Fischer projections of the main aldopentoses.FIGURE 3.7 Cyclic structures of α‐D‐xylopyranose and α‐D‐ribofuran...FIGURE 3.8 Formation of glyceraldehyde 3‐phosphate and dihydroxyacetone 1‐ph...FIGURE 3.9 Formation of sucrose from glucose and fructose.FIGURE 3.10 Aldimine and ketimine formation mechanism by the addition of an ...FIGURE 3.11 Breakdown, according to the Strecker reaction, of an aldimine re...FIGURE 3.12 Osazone formation mechanism by the addition of three phenylhydra...FIGURE 3.13 Methyl D‐glucopyranoside formation mechanism.FIGURE 3.14 Derivatization of α‐ and β‐methoxy‐1‐glucopyranoses in...FIGURE 3.15 Examples of O‐glycosides significant in enology.FIGURE 3.16 Basic structure of α‐homogalacturonan. Chain of partially m...FIGURE 3.17 Structure of a rhamnogalacturonan I (RG‐I). α‐D‐GalAp, α...FIGURE 3.18 Proposed structural model for acidic pectic substances in grapes...FIGURE 3.19 Structure of arabinogalactans in pectic substances (Brillouet et...FIGURE 3.20 Structure of arabinans in pectic substances (Villetaz et al., 1...FIGURE 3.21 Structure of rhamnogalacturonan II (RG‐II) (Doco and Brillouet, ...FIGURE 3.22 Production of exocellular polysaccharides by commercial yeast st...FIGURE 3.23 Influence of temperature on the production of exocellular polysa...FIGURE 3.24 Model of the molecular structure of exocellular mannoproteins pr...FIGURE 3.25 Molecular structure of the exocellular β‐glucan produced by...FIGURE 3.26 Molecular structure of the exocellular β‐(1,3:1,2)‐glucan p...
4 Chapter 4FIGURE 4.1 Iron reactions in aerated wines (Ribéreau‐Gayon et al., 1976). Co...FIGURE 4.2 The various forms of ferric iron after saturation with oxygen, in...FIGURE 4.3 Phytic acid.FIGURE 4.4 Protein cross‐linking by copper and copper casse.
5 Chapter 5FIGURE 5.1 Structure of pyrazines.FIGURE 5.2 The L configuration of an α‐amino acid.FIGURE 5.3 Forms of α‐amino acid in an aqueous solution.FIGURE 5.4 (A) GSH concentrations in different parts of Sauvignon blanc berr...FIGURE 5.5 Structure of glutathione and its reaction with quinones produced ...FIGURE 5.6 Urea cycle and its relationship with the Krebs cycle. Comparative...FIGURE 5.7 Role of arginine in biogenic amine synthesis.FIGURE 5.8 Separation of proteins from Sauvignon Blanc must and wine by elec...FIGURE 5.9 Separating the proteins in Sauvignon Blanc must by chromatofocusi...FIGURE 5.10 Separating proteins (peaks A, B, C, D) and polysaccharides (peak...FIGURE 5.11 Separating proteins in Sauvignon Blanc wine by capillary electro...FIGURE 5.12 Changes in protein concentrations in must during ripening accord...FIGURE 5.13 Changes in the protein concentration of Sauvignon Blanc must dur...FIGURE 5.14 Effect of destemming on the protein concentration of Sauvignon B...FIGURE 5.15 Development of protein stability in a dry Sauvignon Blanc wine b...FIGURE 5.16 Heat stability of various proteins in a Sauvignon Blanc wine sep...FIGURE 5.17 Influence of the quantity of bentonite used to stabilize a wine ...FIGURE 5.18 Effect of adding (250 mg/l) mannoproteins extracted by enzymes f...FIGURE 5.19 Sequence of amino acids 151–200 in S. cerevisiae invertase. The ...FIGURE 5.20 Changes in the dose of bentonite necessary to stabilize a dry Sa...FIGURE 5.21 Changes in the MP32 concentration of a dry Sauvignon Blanc wine ...
6 Chapter 6FIGURE 6.1 Phenolic acids in grapes and wine.FIGURE 6.2 Derivatives of cinnamic acids and tartaric acid. R1 = H, p‐coumar...FIGURE 6.3 7‐O‐β‐D‐Glucosyl‐p‐coumaric acid (Biau, 1996).FIGURE 6.4 Main volatile phenols in wine.FIGURE 6.5 Alcohols and coumarins.FIGURE 6.6 3,5,4′‐Trihydroxystilbene (resveratrol).FIGURE 6.7 Flavonoids: (a) flavone (R3 = H) and flavonol (R3 = OH) and (b) f...FIGURE 6.8 Quercetin 3‐O‐rhamnoside.FIGURE 6.9 Structure of anthocyanidins in grapes and wine.FIGURE 6.10 Structure of (a) anthocyanin 3‐monoglucoside and (b) anthocyanin...FIGURE 6.11 Structure of anthocyanin 3,5‐diglucosides (; see Figure 6.9).FIGURE 6.12 Structure of castavinols resulting from fixing diacetyl (CH3–CO–...FIGURE 6.13 Structure of phenolic acids (a and b) and ellagitannins (c and d...FIGURE 6.14 Structure of flavan‐3‐ol precursors of procyanidins and tannins....FIGURE 6.15 Structure and nomenclature of B‐type dimeric procyanidins (de Fr...FIGURE 6.16 Structure of the dimeric procyanidin A2 (Vivas and Glories, 1996...FIGURE 6.17 Structures of condensed proanthocyanidins.FIGURE 6.18 The various forms of anthocyanins (; see Figure 6.9) (Brouillar...FIGURE 6.19 Changes in the proportion of different forms of anthocyanins acc...FIGURE 6.20 Bleaching of anthocyanin solutions due to pH and sulfur dioxide....FIGURE 6.21 Interaction between proteins and polyphenols (Asano et al., 1982...FIGURE 6.22 Model of protein precipitation by polyphenols (Haslam, 1981).FIGURE 6.23 Breakdown of dimeric procyanidins by acid catalysis (de Freitas,...FIGURE 6.24 Structure of 4‐α‐ethylthioflavan‐3‐ol derived from (+)‐cate...FIGURE 6.25 Diagram of the various hypothetical pathways for the oxidation o...FIGURE 6.26 Example of tannin polymerization: (a) organized polymerization o...FIGURE 6.27 Diagram of heterogeneous polymerization of procyanidins (P) in t...FIGURE 6.28 Polymerization of flavanols in the presence of glyoxylic acid.FIGURE 6.29 Structure of three pigments produced by adding (a) vinylphenol, ...FIGURE 6.30 Direct A–T condensation of anthocyanins and tannins (; see Figu...FIGURE 6.31 Direct T–A type condensation of procyanidins and anthocyanins (FIGURE 6.32 Reaction between catechin and malvidin 3‐O‐glucoside in an acidi...FIGURE 6.33 Red‐violet complex produced by the condensation of malvidin 3‐O‐...FIGURE 6.34 HPLC chromatogram of an anthocyanin solution extracted from Merl...FIGURE 6.35 Simplified method for fractionating various classes of phenolic ...FIGURE 6.36 Influence of the structure of phenolic compounds on the diversit...FIGURE 6.37 Cross section of grape skin (Chardonnay variety). Observation un...FIGURE 6.38 (a) Presence of tannins (T) as a continuous layer on the interna...FIGURE 6.39 Increase in the anthocyanin and tannin concentration in the skin...FIGURE 6.40 Variations in the accumulation of anthocyanins in grape skins du...FIGURE 6.41 Influence of maceration time on the extraction of various compou...FIGURE 6.42 Changes in the intensity of astringency and bitterness depending...
7 Chapter 7FIGURE 7.1 The main monoterpenes and derivatives identified in grapes and wi...FIGURE 7.2 Cyclic terpene derivatives identified in wine.FIGURE 7.3 Illustration of chemical transformation and biotransformation phe...FIGURE 7.4 Formation of “wine lactone” from (E)‐2,6‐dimethyl‐6‐hydroxyocta‐2...FIGURE 7.5 The various forms of terpene glycosides (or norisoprenoids) ident...FIGURE 7.6 Breakdown of carotenoids leading to the formation of C9‐, C10‐, C...FIGURE 7.7 Main families of norisoprenoid derivatives in grapes (C13‐norisop...FIGURE 7.8 Formation pathways of β‐damascenone in grapes and wine (G = ...FIGURE 7.9 Mean intensity of the “vegetal” descriptor in red wine supplement...FIGURE 7.10 Correlation between the “green pepper” character identified duri...FIGURE 7.11 Distribution (%) of IBMP in various parts of Cabernet Sauvignon ...FIGURE 7.12 Aromatic volatile thiols of varietal origin identified in wines:...FIGURE 7.13 Thiopyrroles identified in wines and presenting roasted and gril...FIGURE 7.14 The cysteine conjugate form of 3‐mercaptohexanol (3‐sulfanylhexa...FIGURE 7.15 S‐conjugate precursors of volatile thiols identified in Sauvigno...FIGURE 7.16 Distribution of cysteinylated and glutathionylated precursors of...FIGURE 7.17 Formation of volatile thiols from their cysteinylated precursors...FIGURE 7.18 Keto–enol equilibrium of homofuraneol.FIGURE 7.19 Correlation between the distinctiveness or typicity level of swe...FIGURE 7.20 Various compounds identified in V. labrusca and V. rotundifolia ...
8 Chapter 8FIGURE 8.1 Acetaldehyde in the bound state with aliphatic and cyclic acetals...FIGURE 8.2 Different activated forms of oxygen.FIGURE 8.3 Cascade of chemical reactions involving oxygen and leading to the...FIGURE 8.4 Reaction sequences for the conversion of glycerol into acrolein b...FIGURE 8.5 Volatile phenols responsible for “phenolic” off‐odors in wine.FIGURE 8.6 Comparison of (a) vinylphenol concentrations in white wines and (...FIGURE 8.7 Wines classified according to their volatile phenol concentration...FIGURE 8.8 Decarboxylation of phenolic acids in must by S. cerevisiae during...FIGURE 8.9 Vinylphenol formation mechanism in must clarified using a pectina...FIGURE 8.10 Specific effects of various A. niger esterases in commercial pec...FIGURE 8.11 Impact of the strain of winemaking yeast on the vinylphenol conc...FIGURE 8.12 Example of changes in the ethylphenol concentration of a red win...FIGURE 8.13 Enzyme mechanism for the production of ethylphenols by Brettanom...FIGURE 8.14 Relationship between the free SO2 and ethylphenol concentrations...FIGURE 8.15 The main compounds responsible for cork taint (Amon and Simpson,...FIGURE 8.16 Bacterial transformation of vanillin from cork into guaiacol.FIGURE 8.17 Transformation of a chlorophenol into chloroanisole.FIGURE 8.18 Complete biosynthesis of 2,4,6‐trichloroanisole (Maujean et al.,...FIGURE 8.19 Chemical structure of silicones used to coat corks. (a) Nonreact...FIGURE 8.20 Formulas for the main “light” and “heavy” sulfur derivatives (Ta...FIGURE 8.21 Reduction of sulfates with production of sulfur dioxide, hydroge...FIGURE 8.22 Formation of methionol from methionine (Ehrlich reaction).FIGURE 8.23 Fixing sulfur derivatives (methanethiol, R = CH3; ethanethiol, R...FIGURE 8.24 (a) Formation of thiocarbamic acids from dithiocarbamates. (b) T...FIGURE 8.25 Structure of lannate, an active ingredient in certain insecticid...FIGURE 8.26 Acephate hydrolysis mechanism (Rauhut et al., 1986).FIGURE 8.27 Lannate hydrolysis mechanism.FIGURE 8.28 Disulfide and trisulfide formation by oxidation–reduction in the...FIGURE 8.29 Maillard reaction involved in the nonenzymatic oxidative brownin...FIGURE 8.30 Maillard reaction involved in the appearance of sulfur derivativ...FIGURE 8.31 Photochemical reduction of riboflavin involved in lightstrike.FIGURE 8.32 Sequence of reactions involved in the development of lightstrike...FIGURE 8.33 2‐Aminoacetophenone.FIGURE 8.34 2‐Aminoacetophenone formation pathways.FIGURE 8.35 Methional (1), phenylacetaldehyde (2), and 3‐hydroxy‐4,5‐dimethy...FIGURE 8.36 Keto–enol tautomerism of 3‐methyl‐2,4‐nonanedione.FIGURE 8.37 Examples of 3‐methyl‐2,4‐nonanedione (MND) contents in a great w...FIGURE 8.38 Formula for ()‐geosmin.FIGURE 8.39 Enzyme reduction of 1‐octen‐3‐one to 3‐octanone by S. cerevisiaeFIGURE 8.40 Chemical breakdown of 2‐methylisoborneol by chemical dehydration...FIGURE 8.41 Transformation of sorbic acid by lactic acid bacteria.FIGURE 8.42 Tautomeric forms of 2‐acetyltetrahydropyridine, assumed to be re...FIGURE 8.43 Appearance of a bitter almond off‐odor due to the formation of b...
9 Chapter 9FIGURE 9.1 Diagram of colloidal transformations.FIGURE 9.2 Distribution of charges in a double layer around a charged colloi...FIGURE 9.3 Simulation of the impact of salt concentration (C1 < C2 < C3) on ...FIGURE 9.4 Diagram of the flocculation of a hydrophilic colloid by eliminati...FIGURE 9.5 Two‐stage mechanism by which tannins precipitate proteins (galloy...FIGURE 9.6 Model of the colloidal properties of flavanols (tannins) (Saucier...FIGURE 9.7 Various mechanisms by which polysaccharides protect colloidal par...FIGURE 9.8 Flocculation by bridging of two colloidal particles in the presen...FIGURE 9.9 Depletion phenomenon accounting for the precipitation of colloida...
10 Chapter 10FIGURE 10.1 End of a plunger for adjusting the volume of lees left at the bo...FIGURE 10.2 Influence of the racking method on aeration of the wine: (a) no ...FIGURE 10.3 Diagram of the flocculation mechanism of proteins in wine during...FIGURE 10.4 Diagram of the double layer of a charged particle and the electr...FIGURE 10.5 Changes in electrostatic potential in the vicinity of a double l...FIGURE 10.6 Particle charge detector measuring system (Lagune, 1994).FIGURE 10.7 Mechanisms operating in the solution of a positive species durin...FIGURE 10.8 Measurement cell for zeta potential.FIGURE 10.9 Determining the surface charge density of a negative species by ...FIGURE 10.10 Titration of a red wine with polyDADMAC polyelectrolyte (Lagune...FIGURE 10.11 Changes in the streaming potential of a wine according to the v...FIGURE 10.12 Modeling the fining of a red wine with gelatin using a surface ...FIGURE 10.13 Various methods for mixing fining agents into wine: (a) in a ta...FIGURE 10.14 Flake structure of montmorillonite (bentonite). (T, tetrahedron...FIGURE 10.15 Polymerization of vinylpyrrolidone into (a) polyvinylpyrrolidon...
11 Chapter 11FIGURE 11.1 Graph of t/V = k2t + 1/q0.FIGURE 11.2 Graph of t/V = k3V + 1/q0.FIGURE 11.3 The filtration mechanism(a) Surface deposit: the solid parti...FIGURE 11.4 Structural unit of the glucan molecule in B. cinerea (or cinerea...FIGURE 11.5 Effect of glucan from B. cinerea on pad filtration (Dubourdieu, ...FIGURE 11.6 Effect of adding various doses of glucanase SP 116 during fermen...FIGURE 11.7 Diagram of a 4‐l test chamber capable of withstanding up to 7 ba...FIGURE 11.8 Diagram of the circuits in a diatomaceous earth pressure leaf fi...FIGURE 11.9 Schematic diagram of a plate‐and‐frame filter: 1, piston pump; 2...FIGURE 11.10 Cross‐section diagram of a rotary drum filter, used for must or...FIGURE 11.11 Cellulose pad filter, (a) without and (b) with reversing chambe...FIGURE 11.12 Diagram of a system used to determine filtration characteristic...FIGURE 11.13 Lenticular filter. Vessels fitted with (a) one module and (b) f...FIGURE 11.14 Schematic diagram of tangential filtration: 1, inlet of liquid ...FIGURE 11.15 Diagram of a continuous centrifuge with automatically opening b...FIGURE 11.16 Section diagram of a centrifuge disc: 1, inlet of liquid to be ...
12 Chapter 12FIGURE 12.1 Schematic diagram of a cold stabilization facility: A, untreated...FIGURE 12.2 Ion exchange resin composition. Various functional groups are gr...FIGURE 12.3 Principles of different ion exchange reactions (Weinand and Deda...FIGURE 12.4 Diagram of a simple electrodialysis cell (Moutounet et al. 1994)...
13 Chapter 13FIGURE 13.1 Electrodes for measuring the oxidation–reduction potential and m...FIGURE 13.2 Influence of racking (at time 0) on the evolution of the mean EHFIGURE 13.3 Influence of topping‐up operations on the EH profile of red wine...FIGURE 13.4 Example showing changes in the oxidation–reduction potential of ...FIGURE 13.5 Example showing changes in the oxidation–reduction potential of ...FIGURE 13.6 Changes in phenols (A, anthocyanins; T, tannins) in red wine dur...FIGURE 13.7 Evolution of dissolved oxygen and 3‐SH concentration in red wine...FIGURE 13.8 Different aging curves according to terroir for the 1966 vintage...FIGURE 13.9 The three phases in the aging of red wine (Dubourdieu, 1992). Ta...FIGURE 13.10 Impact of adding increasing quantities of oak chips on the evol...FIGURE 13.11 Chemical structures of triterpenes in oak wood.FIGURE 13.12 Structure of the main volatile compounds identified in extracts...FIGURE 13.13 Formulae and aromas of various isomers of β‐methyl‐γ‐...FIGURE 13.14 Simplified cross‐sectional diagram showing the structure of hea...FIGURE 13.15 Average values of TI calculated for 22 samples of sessile and p...FIGURE 13.16 Various compounds likely to develop when oak is heated during b...