Читать книгу Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google - Робин Ли - Страница 19
Раздел 2. Миссия искусственного интеллекта: «знать больше, делать больше, испытывать больше»
Критерии измерения искусственного интеллекта
ОглавлениеПоявление каждой новой технологии в истории человечества неизбежно будет сопровождаться размышлениями, дискуссиями и противоречиями. Перед лицом подъема искусственного интеллекта с революционными и глобальными изменениями в сфере технологий волнение, вопросы и проблемы крайне разнообразны. Некоторые из них более эмоциональны. Например, обсуждают, может ли искусственный интеллект заменить человека. Речь идет о сравнении искусственного интеллекта с природным (Natural Intelligence).
По вопросу природного интеллекта существуют различные исследования и труды, в том числе и те, которые предполагают, что механизм человеческого мозга опирается на квантовые вычисления. Для искусственного интеллекта нет четкого определения, которое бы не вызывало споров. На данном этапе развития ИИ нет необходимости усердствовать над критериями оценки. Мы могли бы обсудить это прагматично: какие интеллектуальные системы теперь могут позволить нам сделать технологии.
Существует два типа вычислительных систем, которые люди называют искусственным интеллектом.
Первый эквивалентен подсистеме «интеллектуальных вычислительных систем» (ICS). Он использует информацию в качестве входных данных и на ее основе моделирует явления, которые нас интересуют. Мы называем этот тип системы ИИ «универсальной интеллектуальной системой» (General AI). Название говорит о том, что машина обладает способностью получать знания и достигать поставленных целей.
Второй – это машины с когнитивными способностями, которые подобны человеческим. Машины могут «видеть», «слушать», «чувствовать», могут все больше рассуждать и планировать, могут двигаться благодаря сенсорному управлению движения. Мы называем этот тип системы искусственного интеллекта «когнитивной интеллектуальной системой» (когнитивный AI). Это машина со способностями восприятия, рассуждения, планирования и сенсорным управлением движения.
К другой классификации системы искусственного интеллекта относятся «узкий ИИ» и «Общий AI». «Общий AI» – это система, которая использует один и тот же алгоритм для решения большого класса задач. Система «обобщенного ИИ» может быть изучена и адаптирована для решения новых задач без вмешательства человека. Система «узкий AI» использует определенный алгоритм для решения конкретных задач, таких как игра в шахматы, создание карт и т. д.
Таблица 2-1 представляет собой обзор состояния системы искусственного интеллекта. И может служить жизнеспособным определением.
Таблица 2-1
Интеллектуальные вычислительные системы напрямую связаны с большими данными. Любые данные имеют критерии, по которым они генерируются. В основе данных лежит знание.
Основная компетенция универсальной системы искусственного интеллекта заключается в извлечении знаний из данных с помощью алгоритмов и вычислительных систем. После того, как мы получим знания, мы можем сделать множество вещей. Мы можем предсказывать явления и события, можем решить проблему автоматизации, можем решить любую проблему, которая нуждается в решении. Знание говорит нам, чего хотят люди, чего требует общество. Со знанием мы можем найти ответ. Таким образом, первый уровень развития искусственного интеллекта – общий искусственный интеллект.
Прорыв в глубоком обучении, достигнутый в последние годы, касается уровня восприятия. В частности, распознавания изображений и речи, а также понимания естественного языка. Но это только начало. Следующее, что нужно сделать, это добавить познавательную функцию. Система должна научиться познавать окружающий мир через свет, вибрацию звука или язык общения и символы.[5] Самое главное – понять, что это значит. Система видит перед собой картину и может определить, какие объекты или люди в ней находятся и что делают.
В настоящее время почти все компании, которые занимаются разработкой ИИ, могут быть размещены в четырех квадрантах. Большинство компаний создают «узкий AI», который решает только одну проблему или несколько относительно узких: играть в карты или открыть автомобиль. «Общий ИИ» использует одну и ту же систему, для решения всех проблем. И это уже похоже на человеческий интеллект. «Общий ИИ» – это долгосрочная цель развития искусственного интеллекта, достижение которой займет не менее двадцати-тридцати лет. Baidu, Google, Microsoft, Facebook и другие компании работают в направлении «общего AI». И они способны судить, может ли человек с помощью искусственного интеллекта знать больше, делать больше, испытывать больше. Например, компания Baidu, опираясь на данные поисковых систем, провела большое количество технических исследований, прежде чем создать практически невозможное – продукт, который опирается на мнения людей. Мы нашли множество беспрецедентных знаний и сделали множество выводов. Благодаря этому сейчас люди знают больше. Но мы не остановились и продолжаем двигаться вперед, чтобы добиться более невозможного. Беспилотные технологии управления, технологии взаимодействия на естественном языке, сенсорные методы движения постоянно совершенствуются. Сейчас люди используют глаза, чтобы видеть, и уши, чтобы слышать. Но, возможно, в будущем нам не понадобятся ни глаза, ни уши, потому что у нас появится более совершенный способ восприятия реальности.
Таким образом, все компании в сфере ИИ можно оценить по нескольким вопросам: Какой из четырех квадрантов занимает компания? Есть ли у нее силы и средства, чтобы люди с машинами знали больше, делали больше, испытывали больше?
В США и Китае существует множество компаний, которые утверждают, что они занимаются развитием искусственного интеллекта. Некоторые из них говорят, что ИИ – это облачные вычисления. Другие, что ИИ – это большие данные. Но это лишь часть системы искусственного интеллекта. Сила искусственного интеллекта – это массивы данных, облачные вычисления, алгоритмы, время обучения и общая мощность, а также программное и аппаратное обеспечение.
Такую силу невозможно собрать в одночасье. И не имеет смысла обобщать. На Земле нет одной дороги. Есть разные пути. Есть разные сайты, люди, бизнесы. Кто-то из них только начал движение, а кто-то оставил за спиной уже внушительную часть пути.
Baidu Brain можно рассматривать как типичную силу искусственного интеллекта. Его способность к разделению может подчеркнуть нашу состоятельность в индустрии искусственного интеллекта. Если у компании, специализирующейся на продуктах с ИИ, нет возможностей в будущем, можно сказать, что она не готова войти в эту сферу.
Baidu Brain – это сочетание аппаратной базы, базы данных и алгоритмических возможностей, облачных вычислений, больших данных и искусственного интеллекта. Это сочетание является основой стратегии Baidu. Облачные вычисления – это инфраструктура. Массивы данных – это топливо. Искусственный интеллект – это двигатель, объединяющий «физику интернета», интернет-технологии и бизнес-модели цифрового мира. Он входит в общество, чтобы полностью его изменить.
Облачные вычисления, имя в облаке – это нижняя составляющая мозга Baidu, физическая его часть IaaS (Infrastructure as a Service, инфраструктурные услуги).
Супервычислительная мощность Baidu Brain достигается за счет высокопроизводительного вычислительного оборудования. Оно составляет сотни тысяч серверов и использует передовые кластерные операционные системы для унифицированного управления суперкомпьютерами ИИ.
Для того, чтобы расширить возможности обучения, Baidu самостоятельно разработал GPU и FPGA (Программируемая пользователем вентильная матрица) гетерогенный вычислительный сервер. Он был увеличен до 64 GPU / FPGA и превосходит традиционную плотность сервера в 16 раз. Один сервер теперь может завершить обучение 100 миллиардов моделей данных. В основе Baidu FPGA находится процессор, обеспечивающий 10 Tops[6] вычислительной производительности. Он превосходит основной 20-ядерный сервер по вычислительной эффективности в 60 раз.
Но преимущество Baidu не только в одной машине, но и в отличной системе, отличной индивидуальной интеграции. Это формирует широкий спектр возможностей. Интеллектуальное планирование и система управления ресурсами для кластеров GPU позволяют осуществлять управление и динамическое планирование вычислительных, сетевых пулов, а также ресурсов хранения, вычислять общую эффективность и среднее использование кластера на 80 %. Гетерогенное оборудование для онлайн-продуктов, уменьшающее задержки запросов пользователей в 5 раз, повышает эффективность вычислений в десятки раз.
Система представляет собой самый большой кластер GPU/FPGA в Китае, самый большой кластер HADOOP/SPARK – новая одновременная и самая эффективная технология обработки данных (новые вычислительные технологии, серверные технологии, технология доступа 100G RDMA (дистанционная мгновенная технология доступа к данным) и технология O&M). Она обеспечивает вычислительную мощность, необходимую для развития искусственного интеллекта.
Топлива тоже достаточно. За годы работы в сфере ИИ компания Baidu собрала большое количество данных: триллион данных по страницам, миллиарды данных поисковой системы, 10 миллиардов видео, 10 миллиардов изображений и аудиоданных. Данные – это топливо для алгоритмов искусственного интеллекта. Это одно из основных условий развития искусственного интеллекта.
Оборудование в сочетании с топливом является отличным алгоритмом и моделью развития. Baidu собрал команду ведущих мировых ученых и инженеров, специализирующихся на теории и практике непрерывных инноваций, построил крупнейшую в мире глубокую нейронную сеть, поддерживающую триллионы параметров, сотни миллиардов образцов, сотни миллиардов характеристик обучения. Глубина нейронной сети значительно превысила 100 слоев.
Аппаратные мощности, топливо из данных и душа, алгоритм, позволили создать Baidu PaaS (Platform as a Service). Отличительной особенностью Baidu PaaS является то, что ИИ – горизонтальный сервис для всей платформы. Глубокое обучение, технологии машинного обучения в сочетании с мощными вычислениями, массивные данные и отличные алгоритмы, голос, изображения, обработка естественного языка и другие аспекты создают уникальные возможности для разработки карт знаний, портретов пользователей и бизнес-логики. Кроме того, они полностью открыты для пользователей. Пользователи могут легко использовать различные модули алгоритма, инструменты разработки, данные для своих собственных бизнес-целей. Мы используем различные платформы для разных целей: Tianji – для интеллектуальных массивов данных, Tianxiang – интеллектуальных мультимедиа, Tiangong – интеллектуальных вещей. Так, у нас есть возможность оказывать услуги во всех трех областях.
На верхнем уровне SaaS (Software as a Service) искусственный интеллект Baidu используется для принятия вертикальных решений, проникающих во все отрасли. Мы стремимся работать с нашими партнерами над созданием интеллектуальной индустриальной экосистемы, куда войдут образовательное облако, финансовое облако, транспортное облако, логистическое облако и т. д. Мы считаем, что способность строить экологию интеллектуальной промышленности – важный критерий для определения ценности искусственного интеллекта.
В аппаратных мощностях, данных и алгоритмах есть один важный пункт – культура искусственного интеллекта, или «мягкая сила». Технология поиска стала пионером в сфере искусственного интеллекта и первым интернет-порталом цифрового мира. Процесс разработки и технологическое ядро поисковой системы заложили основу для будущего ИИ. Поисковые системы, во-первых, должны были иметь дело с очень большими объемами данных. Во-вторых, должны были обладать функциями глубокого обучения. Операции невозможно совершать вручную, так как объем данных был и остается слишком велик. И, наконец, ключевой момент. Процесс разработки поисковых систем согласуется с развитием систем искусственного интеллекта, в основном с данными, которые представляют ценность для пользователя. Отношения сотрудничества, деловые возможности и рабочие привычки, массивы данных и накопление корпоративной культуры людей из бизнеса поисковых систем очень схожи с бизнесом ИИ. Так Лу Цзи всегда начинал обучать новичков с Bing. Справился там, справишься и в любом другом секторе. В поиске используются очень простые методы. Конечно, культура еще не идеальна. Но она, как и нейронные сети, может развиваться и совершенствоваться при правильном подходе.
5
За последние несколько лет нейросети научились понимать, что за объекты находятся на фотографии и как они взаимойдействуют друг с другом. Например, чашка стоит на столе, а ложка находится внутри чашки. В экспериментальных сетях достигнут и обратный эффект: по текстовому описанию нейросеть способна воссоздать изображение, например женщину, едущую на лошади по лугу. – Прим. науч. ред.
6
Триллион операций в секунду – Прим. науч. ред.