Читать книгу Информационный Завет. Основы. Футурологическое исследование - Роман Александрович Бабкин, Роман Александрович Дорошенко, Роман Александрович Брунер - Страница 12
Глава 2. Благая весть от математиков
Борелевская обезьяна
ОглавлениеЭмиль Борель (Emile Borel) – блестящий учёный, основные труды которого посвящены проблеме меры в математике и теории вероятностей. Он решил разобраться, какие факты, с т. зр. математики, можно считать возможными и какие – иллюзорными. Его интерес был не только академическим, но и вполне практическим (Борель занимался политикой). Когда, например, следует учитывать мнение людей по тому или иному вопросу, а когда этим можно пренебречь.
Борель полагал, что существует настолько маловероятные события, что со всей категоричностью их можно назвать невозможными. В качестве одного из примеров таких событий он в 1913 году предложил т.н. «дактилографическое чудо»10.
Допустим, обезьяна оказалась за пишущей машинкой. Она начинает в беспорядке ударять по клавишам устройства, и на белом листе бумаги появляется некая последовательность знаков. Возможно ли, что когда-нибудь обезьяна напечатает что-нибудь стоящее? Научное или литературное произведение? Например, текст трагедии Уильяма Шекспира «Гамлет»?
Возможно. Хотя вероятность данного события чрезвычайно мала.
Пример с борелевской обезьяной растиражирован во многих художественных и научных публикациях, и я не буду утомлять читателя собственными подсчётами. Сошлюсь на профессора Массачусетского технологического института Сета Ллойда (Seth Lloyd). В своей книге «Программирование Вселенной» (Programming the Universe, 2006 год) он рассказывает – чтобы «дактилографическое чудо» произошло, необходимо выполнение ряда условий. Во-первых, обезьян должно быть 1018 штук. Во-вторых, их нужно тщательно подготовить: скорость печатания должна быть не менее 10 букв в секунду. В-третьих, период деятельности трудолюбивых обезьян-машинисток должен составить чуть больше 30 миллиардов лет (напомню, что уточнённая к настоящему продолжительность существования Вселенной составляет около 13,5 миллиардов лет). Это без учёта времени, которое им следует выделить на заслуженное поедание бананов и сон. Но даже в случае успешной реализации перечисленных условий, всё, что смогут напечатать обезьяны (точнее говоря – только одна из всех), будут слова: «Гамлет. Акт I. Сцена 1».
Пример, приведённый Борелем, можно с легкостью интерпретировать неправильно. Не увидев истинной предпосылки, сделать поспешные выводы.
Кажется, что самоотверженный труд обезьян показывает нам, насколько сложна Вселенная, жизнь, человеческий разум, и чтобы создать такую сложность, нужна, как минимум, такая же сложная структура.
Отсюда два традиционных умозаключения:
1. Идеалистического характера: здесь потрудился Сверх-Разум (бог, зелёные человечки и т.д.).
2. Материалистического свойства: всё сущее – результат случайной флуктуации (космологическая концепция Больцмана).
Оба ответа не верны. Потому что ошибочна начальная предпосылка. Механизм создания Вселенной – не пишущая машинка. Он одновременно проще и сложнее. И более напоминает компьютер. Простое устройство, способное делать сложные вещи. А с чем работает компьютер? Он работает с информацией.
В таком случае «дактилографическое чудо» всего лишь демонстрирует неэффективный способ переработки информации.
Борель показал ничтожную вероятность некоторых событий в реальной жизни. Ту же мысль он пояснял, рассуждая о неограниченном информационном запасе в алфавитных разложениях. Любой алфавит – набор знаков – содержит потенциально огромное количество информации14. Ряды знаков, напечатанных обезьянами-машинистками, практически бесконечны. В груде бесполезных текстов (превышающих объём известной нам Вселенной) есть только крупица смысла. Ради этой капли организованной информации десятки миллиардов лет трудятся квинтиллион героических обезьян.
Можно ли облегчить их работу? Как быть с кипами бумажных листов, содержащих абракадабру вместо бессмертных строчек Шекспира? Как отделить полезное от бесполезного? Можно ли не эмпирически, не «на глазок», а математически описать меру информации, имеющей смысл?
Как видим, размышление о борелевской обезьяне вплотную подводит к законам информационного обмена. Ещё немного, и они были сформулированы.