Читать книгу PID Passivity-Based Control of Nonlinear Systems with Applications - Romeo Ortega - Страница 2

Table of Contents

Оглавление

Cover

Series Page

Title Page

Copyright

Dedication

Author Biographies

Preface Bibliography

Acknowledgments

Acronyms

10  Notation

11  1 Introduction

12  2 Motivation and Basic Construction of PID Passivity‐Based Control 2.1 ‐Stability and Output Regulation to Zero 2.2 Well‐Posedness Conditions 2.3 PID‐PBC and the Dissipation Obstacle 2.4 PI‐PBC with and Control by Interconnection Bibliography Notes

13  3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples 3.1 Tuning of the PI Gains for Control of Induction Motors 3.2 PI‐PBC of a Fuel Cell System Bibliography Notes

14  4 PID‐PBC for Nonzero Regulated Output Reference 4.1 PI‐PBC for Global Tracking 4.2 Conditions for Shifted Passivity of General Nonlinear Systems 4.3 Conditions for Shifted Passivity of Port‐Hamiltonian Systems 4.4 PI‐PBC of Power Converters 4.5 PI‐PBC of HVDC Power Systems 4.6 PI‐PBC of Wind Energy Systems 4.7 Shifted Passivity of PI‐Controlled Permanent Magnet Synchronous Motors Bibliography Notes

15  5 Parameterization of All Passive Outputs for Port‐Hamiltonian Systems 5.1 Parameterization of All Passive Outputs 5.2 Some Particular Cases 5.3 Two Additional Remarks 5.4 Examples Bibliography Note

16  6 Lyapunov Stabilization of Port‐Hamiltonian Systems 6.1 Generation of Lyapunov Functions 6.2 Explicit Solution of the PDE 6.3 Derivative Action on Relative Degree Zero Outputs 6.4 Examples Bibliography Notes

17  7 Underactuated Mechanical Systems 7.1 Historical Review and Chapter Contents 7.2 Shaping the Energy with a PID 7.3 PID‐PBC of Port‐Hamiltonian Systems 7.4 PID‐PBC of Euler‐Lagrange Systems 7.5 Extensions 7.6 Examples 7.7 PID‐PBC of Constrained Euler–Lagrange Systems Bibliography Notes

18  8 Disturbance Rejection in Port‐Hamiltonian Systems 8.1 Some Remarks on Notation and Assignable Equilibria 8.2 Integral Action on the Passive Output 8.3 Solution Using Coordinate Changes 8.4 Solution Using Nonseparable Energy Functions 8.5 Robust Integral Action for Fully Actuated Mechanical Systems 8.6 Robust Integral Action for Underactuated Mechanical Systems 8.7 A New Robust Integral Action for Underactuated Mechanical Systems 8.8 Examples Bibliography Notes

19  Appendix A Passivity and Stability Theory for State‐Space Systems A.1 Characterization of Passive Systems A.2 Passivity Theorem A.3 Lyapunov Stability of Passive Systems Bibliography Note

20  Appendix B Two Stability Results and Assignable Equilibria B.1 Two Stability Results B.2 Assignable Equilibria Bibliography

21  Appendix C Some Differential Geometric Results C.1 Invariant Manifolds C.2 Gradient Vector Fields C.3 A Technical Lemma Bibliography

22  Appendix D Port–Hamiltonian Systems D.1 Definition of Port‐Hamiltonian Systems and Passivity Property D.2 Physical Examples D.3 Euler–Lagrange Models D.4 Port‐Hamiltonian Representation of GAS Systems Bibliography

23  Index

24  End User License Agreement

PID Passivity-Based Control of Nonlinear Systems with Applications

Подняться наверх