Читать книгу Security Engineering - Ross Anderson - Страница 123

4.2 Password eavesdropping risks

Оглавление

Passwords and PINs are still the foundation for much of computer security, as the main mechanism used to authenticate humans to machines. We discussed their usability in the last chapter; now let's consider the kinds of technical attack we have to block when designing protocols that operate between one machine and another.

Remote key entry is a good place to start. The early systems, such as the remote control used to open your garage or to unlock cars manufactured up to the mid-1990's, just broadcast a serial number. The attack that killed them was the ‘grabber’, a device that would record a code and replay it later. The first grabbers, seemingly from Taiwan, arrived on the market in about 1995; thieves would lurk in parking lots or outside a target's house, record the signal used to lock the car and then replay it once the owner had gone1.

The first countermeasure was to use separate codes for lock and unlock. But the thief can lurk outside your house and record the unlock code before you drive away in the morning, and then come back at night and help himself. Second, sixteen-bit passwords are too short. Occasionally people found they could unlock the wrong car by mistake, or even set the alarm on a car whose owner didn't know he had one [309]. And by the mid-1990's, devices appeared that could try all possible codes one after the other. A code will be found on average after about tries, and at ten per second that takes under an hour. A thief operating in a parking lot with a hundred vehicles within range would be rewarded in less than a minute with a car helpfully flashing its lights.

The next countermeasure was to double the length of the password from 16 to 32 bits. The manufacturers proudly advertised ‘over 4 billion codes’. But this only showed they hadn't really understood the problem. There were still only one or two codes for each car, and grabbers still worked fine.

Using a serial number as a password has a further vulnerability: lots of people have access to it. In the case of a car, this might mean all the dealer staff, and perhaps the state motor vehicle registration agency. Some burglar alarms have also used serial numbers as master passwords, and here it's even worse: when a bank buys a burglar alarm, the serial number may appear on the order, the delivery note and the invoice. And banks don't like sending someone out to buy something for cash.

Simple passwords are sometimes the appropriate technology. For example, a monthly season ticket for our local swimming pool simply has a barcode. I'm sure I could make a passable forgery, but as the turnstile attendants get to know the ‘regulars’, there's no need for anything more expensive. For things that are online, however, static passwords are hazardous; the Mirai botnet got going by recruiting wifi-connected CCTV cameras which had a password that couldn't be changed. And for things people want to steal, like cars, we also need something better. This brings us to cryptographic authentication protocols.

Security Engineering

Подняться наверх