Читать книгу Security Engineering - Ross Anderson - Страница 126

4.3.2 Two-factor authentication

Оглавление

The most visible use of challenge-response is probably in two-factor authentication. Many organizations issue their staff with password generators to let them log on to corporate computer systems, and many banks give similar devices to customers. They may look like little calculators (and some even work as such) but their main function is as follows. When you want to log in, you are presented with a random nonce of maybe seven digits. You key this into your password generator, together with a PIN of maybe four digits. The device encrypts these eleven digits using a secret key shared with the corporate security server, and displays the first seven digits of the result. You enter these seven digits as your password. This protocol is illustrated in Figure 4.1. If you had a password generator with the right secret key, and you entered the PIN right, and you typed in the result correctly, then you get in.

Formally, with for the server, for the password generator, for the user's Personal Identification Number, for the user and for the nonce:

These devices appeared from the early 1980s and caught on first with phone companies, then in the 1990s with banks for use by staff. There are simplified versions that don't have a keyboard, but just generate new access codes by encrypting a counter or a clock. And they work; the US Defense Department announced in 2007 that an authentication system based on the DoD Common Access Card had cut network intrusions by 46% in the previous year [321].

This was just when crooks started phishing bank customers at scale, so many banks adopted the technology. One of my banks gives me a small calculator that generates a new code for each logon, and also allows me to authenticate new payees by using the last four digits of their account number in place of the challenge. My other bank uses the Chip Authentication Program (CAP), a calculator in which I can insert my bank card to do the crypto.


Figure 4.1: Password generator use

But this still isn't foolproof. In the second edition of this book, I noted ‘someone who takes your bank card from you at knifepoint can now verify that you've told them the right PIN’, and this now happens. I also noted that ‘once lots of banks use one-time passwords, the phishermen will just rewrite their scripts to do real-time man-in-the-middle attacks’ and this has also become widespread. To see how such attacks work, let's look at a military example.

Security Engineering

Подняться наверх