Читать книгу Security Engineering - Ross Anderson - Страница 162

5.4.1.2 Number of rounds

Оглавление

Second, we have to have enough rounds. The two rounds in Figure 5.10 are completely inadequate, as an opponent can deduce the values of the S-boxes by tweaking input bits in suitable patterns. For example, he could hold the rightmost 12 bits constant and try tweaking the leftmost four bits, to deduce the values in the top left S-box. (The attack is slightly more complicated than this, as sometimes a tweak in an input bit to an S-box won't produce a change in any output bit, so we have to change one of its other inputs and tweak again. But it is still a basic student exercise.)

The number of rounds we need depends on the speed with which data diffuse through the cipher. In our simple example, diffusion is very slow because each output bit from one round of S-boxes is connected to only one input bit in the next round. Instead of having a simple permutation of the wires, it is more efficient to have a linear transformation in which each input bit in one round is the exclusive-or of several output bits in the previous round. If the block cipher is to be used for decryption as well as encryption, this linear transformation will have to be invertible. We'll see some concrete examples below in the sections on AES and DES.

Security Engineering

Подняться наверх