Читать книгу Security Engineering - Ross Anderson - Страница 165

5.4.1.5 Differential cryptanalysis

Оглавление

Differential Cryptanalysis [246, 897] is similar but is based on the probability that a given change in the input to an S-box will give rise to a certain change in the output. A typical observation on an 8-bit S-box might be that “if we flip input bits 2, 3, and 7 at once, then with probability the only output bits that will flip are 0 and 1”. In fact, with any nonlinear Boolean function, tweaking some combination of input bits will cause some combination of output bits to change with a probability different from one half. The analysis procedure is to look at all possible input difference patterns and look for those values , such that an input change of will produce an output change of with particularly high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that an input difference which we can feed into the cipher will produce a known output difference with a useful probability over a number of rounds. Given enough chosen inputs, we will see the expected output and be able to make deductions about the key. As in linear cryptanalysis, it's common to consider the cipher to be secure if the number of texts required for an attack is greater than the total possible number of different texts for that key. (We have to be careful of pathological cases, such as if you had a cipher with a 32-bit block and a 128-bit key with a differential attack whose success probability given a single pair was . Given a lot of text under a number of keys, we'd eventually solve for the current key.)

There are many variations on these two themes. For example, instead of looking for high probability differences, we can look for differences that can't happen (or that happen only rarely). This has the charming name of impossible cryptanalysis, but it is quite definitely possible against many systems [243]4.

Block cipher design involves a number of trade-offs. For example, we can reduce the per-round information leakage, and thus the required number of rounds, by designing the rounds carefully. But a complex design might be slow in software, or need a lot of gates in hardware, so using simple rounds but more of them might have been better. Simple rounds may also be easier to analyse. A prudent designer will also use more rounds than are strictly necessary to block the attacks known today, in order to give some safety margin, as attacks only ever get better. But while we may be able to show that a cipher resists all the attacks we know of, and with some safety margin, this says little about whether it will resist novel types of attack. (A general security proof for a block cipher would appear to imply a result such as that would revolutionise computer science.)

Security Engineering

Подняться наверх