Читать книгу Applied Microsoft Business Intelligence - Sarka Dejan - Страница 14

Part I
Overview of the Microsoft Business Intelligence Toolset
Chapter 2
Designing an Effective Business Intelligence Architecture
Using a Data Warehouse (or Not)

Оглавление

For the experienced business intelligence developer, developing a business intelligence solution without a data warehouse may seem absurd. However, with today's savvy end users, readily accessible data is no longer an option; it is a requirement. Therefore, nightly refreshes of data is becoming a thing of the past. And as a result, including a data warehouse as part of a business intelligence project is now optional.

Traditionally, a data warehouse is loaded at some time interval – daily, weekly, and some even monthly. Depending on the organization the time period may be longer. For example, some colleges or universities load data into a data warehouse only at the end of the semester. As data needs become more stringent, the periods of latency between live data and analytical data have become smaller and smaller, presenting challenges that are often difficult to overcome. The primary challenge is moving data from the source systems to the data warehouse, which leads to the question: Is a data warehouse required?

Think back to Chapter 1, specifically to Figure 1-1, which we're showing again in this chapter (see Figure 2.1). This figure depicts an illustration of reporting from multiple data sources. How can you create a single report to reference multiple desperate sources? Which tool would you use? A few may accomplish this task, and because this is a Microsoft-focused book, the tool that comes to mind is Power Pivot. Power Pivot is an Excel add-in that creates an in-memory semantic model based on a plethora of data sources. Figure 2.2 displays an abbreviated list of data sources that possibly source the data warehouse.


Figure 2.1 Reporting against disparate data sources


Figure 2.2 Data sources that source a data warehouse


With that in mind, and because this feature is available, you might ask yourself: Why should I develop a data warehouse? Couldn't data be accessed directly from the source, modeled, and then reported against? The answer is: absolutely. But in most cases the data has not been validated so that it could meet the needs of every aspect of the business, or possibly two systems exist that store similar data. Which set should you use for reporting? Another possibility is that a value is calculated one way by one set of users and another way by another set. Which means of calculation is the correct one? This is where the ETL process becomes a significant part of your business intelligence solution.

NOTE

Although this book does not focus on loading the data warehouse using SQL Server Integration Services (SSIS), please do not discount the importance of an ETL solution. The Microsoft Business Intelligence 24-Hour Trainer provides an SSIS section that provides a good starting point and overview.

During the ETL process, the data is extracted from the original data sources, transformed into a format or formats that meet the business requirements, and finally loaded into a central repository (data warehouse). You can use the repository as a direct source for reporting or as a semantic model. Regardless of the approach, leveraging a single source for either makes the process of obtaining and visualizing data simpler for any individual or group that needs to access the data.

Applied Microsoft Business Intelligence

Подняться наверх