Читать книгу Пространство, время и движение. Величайшие идеи Вселенной - Шон Кэрролл, Шон Б. Кэрролл, Sean Carroll - Страница 10

Один. Сохранение
Классическая механика

Оглавление

На долгом пути к обретению знаний об импульсах люди не только открыли закон, который важен и по сей день, но и по-новому стали смотреть на физику. Исчез предложенный Аристотелем телеологический мир внутренних сущностей, причин и следствий, а также движения, требующего движущей силы. На смену ему пришел мир закономерностей, законов физики. И после важных открытий, сделанных Декартом, Галилеем и другими учеными, появилась первая полноценная система физических законов. Созданная Исааком Ньютоном в 1687 году, сегодня она известна как классическая механика.

Важно уточнить, что современные физики проводят различие между «классической механикой» – довольно широкой и универсальной системой законов – и «механикой Ньютона» – одной из конкретных моделей в этой системе. Классическая механика (в отличие, например, от механики квантовой) утверждает, что мир состоит из объектов, которые обладают определенными измеримыми свойствами и подчиняются однозначным уравнениям движения. Механика Ньютона рассматривает эти объекты в абсолютном пространстве и времени. В отличие от нее «релятивистская механика», которая также является классической, основана на том, что пространство и время представляют собой единое целое. Пока мы не начнем разговор о теории относительности, все уравнения для таких понятий, как импульс и энергия, мы будем брать из механики Ньютона.

Чтобы совсем вас запутать, добавлю, что есть еще механика Лагранжа и механика Гамильтона. Обе они, безусловно, являются классическими. И обе математически эквивалентны механике Ньютона, хоть и основаны на других понятиях. Считать ли их чем-то отличным от механики Ньютона или же нет – дело вкуса.

Классическая механика – это теория закономерностей, а не природы или причинно-следственных связей. Вместо «Какое состояние естественно для системы?» или «Почему система движется именно так?» мы спрашиваем: «Что происходит с системой в конкретный момент времени?». Полученный ответ дает возможность сделать прогноз на любой другой момент, причем не только в будущем, но и в прошлом. Вот, например, уравнение (1.2) (закон сохранения импульса) можно рассматривать применительно к прошлому: если мы знаем конечный суммарный импульс, мы можем утверждать, что он равен начальному, то есть не изменился.

Мы подошли к еще одному, гораздо более важному закону сохранения: сохранения информации, на котором по сути построена классическая механика Ньютона. Однако популярность среди ученых этот закон приобрел в 1814 году благодаря трудам Пьера-Симона Лапласа. По мнению этого математика из Франции, состояние классической системы в любой момент времени определяется положением и скоростью всех ее частей (например, Солнца и планет). Этот объем информации сохраняется с течением времени. По одному состоянию системы мы можем предсказать любые другие состояния, как в будущем, так и в прошлом. Разумеется, при наличии точных данных и мощных вычислительных систем. Лаплас представил себе «сверхразум», гипотетическое существо с такими возможностями, которое затем назвали демоном Лапласа. Разумеется, главный смысл этой идеи не в том, что кто-то может быть способен на такие предсказания, а в том, что мы должны стремиться к этому. Никто не может знать положение и скорость каждого атома в песчинке, тем более – во всей вселенной. Но у самой вселенной такие данные есть, и по законам классической механики они сохраняются во времени.

Пространство, время и движение. Величайшие идеи Вселенной

Подняться наверх