Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Stephen Rolt
Optical Engineering Science
Читать книгу Optical Engineering Science - Stephen Rolt - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
111
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Optical Engineering Science
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Optical Engineering Science
Страница 8
Preface
Glossary
About the Companion Website
1 Geometrical Optics 1.1 Geometrical Optics – Ray and Wave Optics
1.2 Fermat's Principle and the Eikonal Equation
1.3 Sequential Geometrical Optics – A Generalised Description
1.3.1 Conjugate Points and Perfect Image Formation
1.3.2 Infinite Conjugate and Focal Points
1.3.3 Principal Points and Planes
1.3.4 System Focal Lengths
1.3.5 Generalised Ray Tracing
1.3.6 Angular Magnification and Nodal Points
1.3.7 Cardinal Points
1.3.8 Object and Image Locations - Newton's Equation
1.3.9 Conditions for Perfect Image Formation – Helmholtz Equation
1.4 Behaviour of Simple Optical Components and Surfaces 1.4.1 General
1.4.2 Refraction at a Plane Surface and Snell's Law
1.4.3 Refraction at a Curved (Spherical) Surface
1.4.4 Refraction at Two Spherical Surfaces (Lenses)
1.4.5 Reflection by a Plane Surface
1.4.6 Reflection from a Curved (Spherical) Surface
1.5 Paraxial Approximation and Gaussian Optics
1.6 Matrix Ray Tracing 1.6.1 General
1.6.2 Determination of Cardinal Points
1.6.3 Worked Examples
Worked Example 1.1
Thick Lens
Worked Example 1.2
Hubble Space Telescope
1.6.4 Spreadsheet Analysis
Further Reading
2 Apertures Stops and Simple Instruments 2.1 Function of Apertures and Stops
2.2 Aperture Stops, Chief, and Marginal Rays
2.3 Entrance Pupil and Exit Pupil
Worked Example 2.1
Cooke Triplet
2.4 Telecentricity
2.5 Vignetting
2.6 Field Stops and Other Stops
2.7 Tangential and Sagittal Ray Fans
2.8 Two Dimensional Ray Fans and Anamorphic Optics
2.9 Optical Invariant and Lagrange Invariant
2.10 Eccentricity Variable
2.11 Image Formation in Simple Optical Systems
2.11.1 Magnifying Glass or Eye Loupe
2.11.2 The Compound Microscope
2.11.3 Simple Telescope
2.11.4 Camera
Further Reading
3 Monochromatic Aberrations 3.1 Introduction
3.2 Breakdown of the Paraxial Approximation and Third Order Aberrations
3.3 Aberration and Optical Path Difference
3.4 General Third Order Aberration Theory
3.5 Gauss-Seidel Aberrations 3.5.1 Introduction
3.5.2 Spherical Aberration
3.5.3 Coma
3.5.4 Field Curvature
3.5.5 Astigmatism
3.5.6 Distortion
3.6 Summary of Third Order Aberrations
3.6.1 OPD Dependence
3.6.2 Transverse Aberration Dependence
3.6.3 General Representation of Aberration and Seidel Coefficients
Further Reading
4 Aberration Theory and Chromatic Aberration 4.1 General Points
4.2 Aberration Due to a Single Refractive Surface
4.2.1 Aplanatic Points
Worked Example 4.1
Microscope Objective
4.2.2 Astigmatism and Field Curvature
4.3 Reflection from a Spherical Mirror
4.4 Refraction Due to Optical Components 4.4.1 Flat Plate
Worked Example 4.2
Microscope Cover Slip
4.4.2 Aberrations of a Thin Lens
4.4.2.1 Conjugate Parameter and Lens Shape Parameter
4.4.2.2 General Formulae for Aberration of Thin Lenses
4.4.2.3 Aberration Behaviour of a Thin Lens at Infinite Conjugate
Worked Example 4.3
Best form Singlet
4.4.2.4 Aplanatic Points for a Thin Lens
Worked Example 4.4
Microscope Objective – Hyperhemisphere Plus Meniscus Lens
4.5 The Effect of Pupil Position on Element Aberration
4.6 Abbe Sine Condition
4.7 Chromatic Aberration 4.7.1 Chromatic Aberration and Optical Materials
4.7.2 Impact of Chromatic Aberration
Worked Example 4.5
Lateral Chromatic Aberration and the Huygens Eyepiece
4.7.3 The Abbe Diagram for Glass Materials
4.7.4 The Achromatic Doublet
Worked Example 4.6
Simple Achromatic Doublet
4.7.5 Optimisation of an Achromatic Doublet (Infinite Conjugate)
Worked Example 4.7
Detailed Design of 200 mm Focal Length Achromatic Doublet
4.7.6 Secondary Colour
4.7.7 Spherochromatism
4.8 Hierarchy of Aberrations
Further Reading
5 Aspheric Surfaces and Zernike Polynomials 5.1 Introduction
5.2 Aspheric Surfaces 5.2.1 General Form of Aspheric Surfaces
5.2.2 Attributes of Conic Mirrors
Worked Example 5.1
Simple Mirror-Based Magnifier
5.2.3 Conic Refracting Surfaces
5.2.4 Optical Design Using Aspheric Surfaces
5.3 Zernike Polynomials 5.3.1 Introduction
5.3.2 Form of Zernike Polynomials
5.3.3 Zernike Polynomials and Aberration
5.3.4 General Representation of Wavefront Error
5.3.5 Other Zernike Numbering Conventions
Further Reading
{buyButton}
Подняться наверх