Читать книгу Optical Engineering Science - Stephen Rolt - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Figure 1.1 The electromagnetic spectrum.Figure 1.2 Relationship between rays and wavefronts.Figure 1.3 Arbitrary ray path between two points.Figure 1.4 Constraint of rays with respect to optical axis.Figure 1.5 Generalised optical system and conjugate points.Figure 1.6 Location of first focal point.Figure 1.7 Principal points and principal planes.Figure 1.8 System focal lengths.Figure 1.9 Tracing of arbitrary ray.Figure 1.10 Angular magnification and nodal points.Figure 1.11 Generalised object and image.Figure 1.12 Refraction at a plane surface.Figure 1.13 Refraction at a spherical surface.Figure 1.14 Refraction by two spherical surfaces (lens).Figure 1.15 Reflection at a plane surface.Figure 1.16 Reflection from a curved surface.Figure 1.17 Complex optical system.Figure 1.18 Modelling of complex systems.Figure 1.19 Thick lens.Figure 1.20 Hubble space telescope schematic.

2 Chapter 2Figure 2.1 Aperture stop.Figure 2.2 Location of entrance and exit pupils.Figure 2.3 Cooke triplet.Figure 2.4 Optical system with a telecentric output.Figure 2.5 Vignetting.Figure 2.6 (a) Tangential ray fan; (b) Sagittal ray fan.Figure 2.7 Simple magnifying lens.Figure 2.8 Compound microscope.Figure 2.9 Basic optical telescope.Figure 2.10 Basic camera.

3 Chapter 3Figure 3.1 (a) Gaussian imaging. (b) Impact of aberration.Figure 3.2 Transverse and longitudinal aberration.Figure 3.3 (a) Ray fan for pure third order aberration. (b) Ray fan with third...Figure 3.4 Balancing defocus against aberration – optimal focal position.Figure 3.5 Illustration of optical path difference.Figure 3.6 Wavefront representation of aberration.Figure 3.7 Simplified wavefront and ray geometry.Figure 3.8 Quartic OPD fan.Figure 3.9 OPD fan with balancing defocus.Figure 3.10 (a) Generic layout. (b) Layout with y co-ordinate transformation....Figure 3.11 Geometrical spot associated with spherical aberration.Figure 3.12 OPD fan for coma.Figure 3.13 Ray fan for coma.Figure 3.14 Geometrical spot for coma.Figure 3.15 Field curvature.Figure 3.16 Ray fan plots illustrating field curvature.Figure 3.17 Ray fan for astigmatism showing tangential and sagittal fans.Figure 3.18 Geometric spot vs. defocus for astigmatism.Figure 3.19 (a) Pincushion (positive) distortion. (b) Barrel (negative) distor...

4 Chapter 4Figure 4.1 Calculation of OPD for refractive surface.Figure 4.2 Aplanatic points for refraction at single spherical surface.Figure 4.3 Hyperhemisphere objective.Figure 4.4 Field curvature for single refraction.Figure 4.5 Reflection at spherical mirror.Figure 4.6 Petzval curvature for mirror.Figure 4.7 Spherical aberration in cover slip.Figure 4.8 Aberration analysis for thin lens.Figure 4.9 Conjugate parameter.Figure 4.10 Coddington lens shape parameter.Figure 4.11 Spherical aberration vs. shape parameter for a thin lens.Figure 4.12 Coma vs lens shape for various conjugate parameters.Figure 4.13 Spherical aberration vs shape factor for various conjugate paramet...Figure 4.14 Aplanatic meniscus lens.Figure 4.15 Impact of stop movement.Figure 4.16 Simple symmetric lens system with stop shift.Figure 4.17 Impact of stop shift for simple symmetric lens system.Figure 4.18 Abbe sine condition.Figure 4.19 Fulfilment of Abbe sine condition for aplanatic meniscus lens.Figure 4.20 Refractive index variation with wavelength for SCHOTT BK7 glass ma...Figure 4.21 Longitudinal chromatic aberration.Figure 4.22 Transverse chromatic aberration.Figure 4.23 Huygens eyepiece.Figure 4.24 Abbe diagram.Figure 4.25 The achromatic doublet.Figure 4.26 Secondary colour.Figure 4.27 Plot of partial dispersion against Abbe number.Figure 4.28 Contribution of different aberrations vs. numerical aperture for 2...

5 Chapter 5Figure 5.1 Ellipsoid of revolution.Figure 5.2 Single refractive surface at infinite conjugate.Figure 5.3 Simple two lens system employing aspheric components.Figure 5.4 Polar pupil coordinates.Figure 5.5 Fifth order Zernike polynomial and aberration balancing.

6 Chapter 6Figure 6.1 Conceptual illustration of Huygens' principle.Figure 6.2 Huygens secondary wave geometry.Figure 6.3 Geometry for Rayleigh diffraction equation of the first kind.Figure 6.4 Far field diffraction.Figure 6.5 Far field diffraction of laser beam emerging from fibre.Figure 6.6 Imaging of a Fraunhofer diffraction pattern by a simple lens.Figure 6.7 Diffraction of evenly illuminated pupil.Figure 6.8 Airy disc.Figure 6.9 Graphical trace of Airy disc.Figure 6.10 The Rayleigh criterion and ideal diffraction limited resolution.Figure 6.11 Profile of two point sources just resolved under Rayleigh criterio...Figure 6.12 Gaussian beam.Figure 6.13 Form of expanding Gaussian beam and beam waist.Figure 6.14 A selection of low order Hermite polynomials.Figure 6.15 Fresnel integral and Cornu spiral.Figure 6.16 Fresnel diffraction at 100 mm from 2 mm Slit – λ = 500 nm.Figure 6.17 Geometric spots for spherical aberration and coma.Figure 6.18 OPD map across pupil.Figure 6.19 Huygens point spread function.Figure 6.20 MTF pattern.Figure 6.21 Typical MTF plot.Figure 6.22 1951 USAF resolution test chart.

7 Chapter 7Figure 7.1 Emission from a generic source.Figure 7.2 Operation of the inverse square law.Figure 7.3 Radiance and exitance from a surface.Figure 7.4 Xenon arc lamp spectral intensity.Figure 7.5 Solar spectral irradiance.Figure 7.6 Solar spectral radiance and 5800 K blackbody radiance.Figure 7.7 Étendue of a pencil of rays.Figure 7.8 Illustration of BRDF.Figure 7.9 BRDF of Spectralon at 900 nm for normal illumination.Figure 7.10 Surface roughness.Figure 7.11 PSD for idealised polished surface (note units are in microns).Figure 7.12 Köhler illumination.Figure 7.13 Diffuser scattering profile.Figure 7.14 Integrating sphere.Figure 7.15 (a) Flux measurement. (b) Reflectance measurement.Figure 7.16 Natural vignetting.Figure 7.17 Substitution radiometer.Figure 7.18 Blackbody radiometric source.Figure 7.19 FEL lamp calibration.Figure 7.20 Luminous efficiency function.Figure 7.21 Luminous efficiency vs. blackbody temperature.Figure 7.22 Luminance vs. blackbody temperature.Figure 7.23 Colour matching curves.Figure 7.24 Standard astronomical filter response curves.

8 Chapter 8Figure 8.1 Plane polarised waves.Figure 8.2 Polarisation states (a) Linear, (b) Right hand circular, (c) Left h...Figure 8.3 Polarisation ellipse.Figure 8.4 Reflection at an interface.Figure 8.5 Reflection coefficient vs angle for n = 1.5.Figure 8.6 Induced dipole formation in refractive material.Figure 8.7 Index ellipsoid.Figure 8.8 Phase delay and propagation through a birefringent crystal.Figure 8.9 Propagation of light in a uniaxial crystal.Figure 8.10 Double refraction in calcite.Figure 8.11 Phenomenon of walk-off in birefringent crystals.Figure 8.12 Operation of half-waveplate.Figure 8.13 Common experimental configuration for quarter waveplate.Figure 8.14 Woolaston prism.Figure 8.15 Glan taylor polariser.Figure 8.16 Polarising beamsplitter cube.Figure 8.17 Wire grid polariser.Figure 8.18 (a) Optical isolator in transmission. (b) Blocking by optical isol...Figure 8.19 Application of jones matrices.Figure 8.20 Jones matrix multiplication.Figure 8.21 Twisted nematic liquid crystal.Figure 8.22 Use of stress induced birefringence to analyse patterns of stress....

9 Chapter 9Figure 9.1 Resonant dipole.Figure 9.2 Modelled index of SCHOTT BK7®.Figure 9.3 Thermal sensitivity and effect of substrate.Figure 9.4 Refractive index of air.Figure 9.5 Complex index of aluminium.Figure 9.6 Reflectivity of principal metal coatings.Figure 9.7 Reflection coefficient vs angle for aluminium at 800 nm.Figure 9.8 Band gap in semiconductors.Figure 9.9 Glass transmission vs wavelength (internal transmission for 10 mm t...Figure 9.10 Internal transmission for crystalline halides (10 mm thickness).Figure 9.11 Internal transmission for some chalcogenides (10 mm thickness).Figure 9.12 Internal transmission for some semiconductors (10 mm thickness).

10 Chapter 10Figure 10.1 Thin film reflectance at an interface.Figure 10.2 Performance of antireflection coating.Figure 10.3 Multilayer quarter wavelength stack.Figure 10.4 Multilayer stack – reflectivity vs wavelength (design wavelength 5...Figure 10.5 Transmission and reflection of a thin chromium film at 540 nm.Figure 10.6 Transmission of 4 nm chromium film vs. wavelength.Figure 10.7 Reflectivity of aluminium coatings.Figure 10.8 Performance of typical broadband antireflection coating.Figure 10.9 General characteristics of edge filters.Figure 10.10 Transmission of some WRATTEN™ filters.Figure 10.11 Bandpass filter characteristics.Figure 10.12 Typical characteristics of neutral density filters.Figure 10.13 Polarising beamsplitter.Figure 10.14 Polarising beam splitter (design wavelength 600 nm).Figure 10.15 Application of dichroic filter.Figure 10.16 Geometry of etalon filter.Figure 10.17 Etalon response function.Figure 10.18 Pressure tuned etalon.Figure 10.19 Basic bandpass filter design.Figure 10.20 Transmission for basic bandpass filter design.Figure 10.21 ‘Computer Optimised’ broadband antireflection coating performance...Figure 10.22 Evaporation process.Figure 10.23 Sputtering process.

11 Chapter 11Figure 11.1 Minimum deviation refraction produced by a prism.Figure 11.2 Anamorphic magnification by prism.Figure 11.3 Dual prism anamorphic magnifier.Figure 11.4 45° prism.Figure 11.5 Porro prism.Figure 11.6 Double Porro prism.Figure 11.7 Pentaprism.Figure 11.8 (a) Dove prism. (b) Abbe König prism.Figure 11.9 Corner cube retroreflector.Figure 11.10 Operation of diffraction grating.Figure 11.11 Diffraction pattern from grating with 10 slits.Figure 11.12 Diffraction efficiency vs order.Figure 11.13 Transmission grating.Figure 11.14 Phase grating efficiency.Figure 11.15 Diffraction for non-zero angle of incidence.Figure 11.16 Operation of reflective grating.Figure 11.17 Blazed diffraction grating.Figure 11.18 Diffraction grating in Littrow configuration.Figure 11.19 Generic efficiency curve for a blazed diffraction grating.Figure 11.20 Blazed grating showing polarisation orientations.Figure 11.21 Grating efficiency for two polarisation direc....Figure 11.22 Holographic grating profile.Figure 11.23 Echelle grating.Figure 11.24 Rowland grating arrangement.Figure 11.25 Grating prism or grism.Figure 11.26 Diffractive lens.Figure 11.27 Ruled grating replication.Figure 11.28 Fabrication of a holographic grating.

12 Chapter 12Figure 12.1 (a) Absorption. (b) Stimulated emission. (c) Spontaneous emission....Figure 12.2 Three level laser scheme.Figure 12.3 Schematic of Ruby laser.Figure 12.4 The helium neon pumping scheme.Figure 12.5 Helium neon laser.Figure 12.6 Stimulated emission in a semiconductor laser.Figure 12.7 Simplified sketch of semiconductor laser.Figure 12.8 Double heterostructure laser.Figure 12.9 Generalised representation of a laser cavity.Figure 12.10 Laser gain profile and longitudinal modes.Figure 12.11 Active mode locking.Figure 12.12 Q switched laser.Figure 12.13 Ring laser.Figure 12.14 Stable resonator geometry.Figure 12.15 Laser cavity stability.Figure 12.16 Gaussian beam and cavity geometry.Figure 12.17 Dye laser schematic.Figure 12.18 Parametric oscillator.Figure 12.19 Laser penetration depth vs. interaction time.Figure 12.20 Chart of laser materials processing applications.Figure 12.21 Laser tracking – 3D coordinate metrology.Figure 12.22 Quadrant detector.Figure 12.23 Underlying principle of holography.

13 Chapter 13Figure 13.1 Fibre propagation.Figure 13.2 (a) Step index fibre, (b) Graded index fibre.Figure 13.3 Periodic propagation in a graded index fibre.Figure 13.4 Ray paths in a focusing GRIN lens.Figure 13.5 Impact of fibre bend radius.Figure 13.6 Geometry of fibre bending.Figure 13.7 Geometrical effect of fibre bending on numerical aperture (n0 = 1....Figure 13.8 Slab waveguide.Figure 13.9 Slab waveguide (weakly guided).Figure 13.10 Modal chromaticity for example waveguide.Figure 13.11 Strongly guided waveguide.Figure 13.12 Optical fibre model.Figure 13.13 Flux distribution in single mode fibre.Figure 13.14 Dependence of U and W parameters on normalised frequency paramete...Figure 13.15 Gaussian beam size, w0, vs, normalised frequency parameter, V.Figure 13.16 Silica fibre attenuation.Figure 13.17 Group velocity dispersion in silica.Figure 13.18 Coupling into a multimode fibre.Figure 13.19 Fibre coupling and offset beam.Figure 13.20 (a) Splitter, (b) Combiner, (c) Coupler.Figure 13.21 Polarisation maintaining fibre preform.Figure 13.22 Photonic crystal fibre cross section.Figure 13.23 Creation of fibre Bragg grating ...Figure 13.24 Optical fibre manufacture.

14 Chapter 14Figure 14.1 Photomultiplier tube.Figure 14.2 Sensitivity of some photocathode materials.Figure 14.3 Photo-emission and thermionic emission.Figure 14.4 Operational principle of p-n photodiode.Figure 14.5 Layout of p-i-n detector.Figure 14.6 Sensitivity of photodiode materials.Figure 14.7 Effect of bias voltage on photodiode current.Figure 14.8 Operation of an avalanche photodiode.Figure 14.9 Operation of a CCD device.Figure 14.10 Active pixel or CMOS detector.Figure 14.11 Photoconductive detector.Figure 14.12 Simple bolometer.Figure 14.13 Sensitivity of InSb detector vs background temperature.Figure 14.14 Equivalent circuit for Johnson noise.Figure 14.15 Equivalent read circuit for array detector pixel.Figure 14.16 Frequency dependence of pink noise.Figure 14.17 Optical measurement with optical chopper and lock-in amplifier.Figure 14.18 Image centroiding.Figure 14.19 MTF of pixelated detector illustrating Nyquist sampling.

15 Chapter 15Figure 15.1 Paraxial layout of eyepiece.Figure 15.2 Cardinal points of Ramsden and Huygens eyepieces.Figure 15.3 Layout of optimised Kellner design.Figure 15.4 Performance of modified Kellner eyepiece.Figure 15.5 Plössl eyepiece layout.Figure 15.6 Performance of Plössl eyepiece.Figure 15.7 Modified Nägler eyepiece.Figure 15.8 Performance of modified Nägler eyepiece.Figure 15.9 Simple ×10 microscope objective.Figure 15.10 Wavefront error performance of simple ×10...Figure 15.11 ×100 Microscope objective.Figure 15.12 (a) Newtonian layout. (b) Cassegrain layout. (c) Pupil obscuratio...Figure 15.13 Ritchey-Chrétien telescope.Figure 15.14 Three mirror anastigmat.Figure 15.15 Schmidt camera system (sag of adaptor plate greatly exaggerated)....Figure 15.16 Basic Gauss doublet.Figure 15.17 Performance of simple Gauss lens.Figure 15.18 Optimised modified Gauss lens.Figure 15.19 Modified double Gauss performance.Figure 15.20 MTF of compact double Gauss lens.Figure 15.21 General layout of a zoom lens.Figure 15.22 Paraxial analysis of zoom lens performance.Figure 15.23 Mechanically compensated zoom lens.Figure 15.24 Paraxial outline of optically compensated zoom lens.Figure 15.25 Paraxial behaviour of optically compensated zoom lens.

16 Chapter 16Figure 16.1 Basic principle of interferometry.Figure 16.2 Fizeau interferometer.Figure 16.3 Twyman-Green interferometer.Figure 16.4 Mach-Zehnder interferometer.Figure 16.5 Lateral shear interferometer.Figure 16.6 Mirau objective.Figure 16.7 Modelled white light fringes.Figure 16.8 White light interferogram of diamond machined Al surface.Figure 16.9 ‘Vibration Free’ interferometer.Figure 16.10 Absolute form measurement of reference sphere.Figure 16.11 The three flat test.Figure 16.12 Interferometric testing of a paraboloidal mirror.Figure 16.13 Oblate spheroid test.Figure 16.14 Ross null test.Figure 16.15 Computer generated hologram Fizeau test.Figure 16.16 Shack-Hartmann wavefront sensor.Figure 16.17 Deployment of Shack-Hartmann sensor.Figure 16.18 Foucault knife edge test.Figure 16.19 Fringe projection.Figure 16.20 Shadow Moiré technique.Figure 16.21 Scanning pentaprism test.Figure 16.22 Confocal microscopy.

17 Chapter 17Figure 17.1 General layout of a monochromator.Figure 17.2 General layout of a spectrometer.Figure 17.3 Czerny-Turner monochromator.Figure 17.4 Slit function for varying slit widths.Figure 17.5 Fastie-Ebert spectrometer.Figure 17.6 Offner spectrometer.Figure 17.7 Image of slit at detector.Figure 17.8 Layout of imaging spectrometer.Figure 17.9 Principle of image slicing.Figure 17.10 Operation of a push broom scanner.Figure 17.11 Cross dispersion in an Echelle grating spectrometer.Figure 17.12 Fourier transform spectrometer.Figure 17.13 Fourier transform spectrograph of two closely spaced lines.

18 Chapter 18Figure 18.1 Concurrent engineering – ‘Closing the Loop’.Figure 18.2 Subsystem partitioning of requirements.Figure 18.3 Design process.Figure 18.4 Design tools.Figure 18.5 Doublet wavefront error vs field angle (before optimisation).Figure 18.6 Doublet ray trace plot.Figure 18.7 Doublet wavefront error vs field angle (after optimisation).Figure 18.8 Monte Carlo simulation of tolerancing for simple doublet.Figure 18.9 Tolerancing process.Figure 18.10 Revised Monte Carlo simulation of tolerancing for simple doublet....Figure 18.11 Mechanical tolerances in a simple spherical single lens.Figure 18.12 Model for microscope illumination system.Figure 18.13 Microscope illumination – irradiance uniformity.Figure 18.14 Relative irradiance across illuminated area.Figure 18.15 Baffling effect of lens tube.Figure 18.16 Lens hood and additional baffling.

19 Chapter 19Figure 19.1 Uniform shear forces acting on an element.Figure 19.2 Flexure of optical bench under load.Figure 19.3 Flexure in a beam element.Figure 19.4 Force and bending moment in a cantilever.Figure 19.5 Forces acting on single beam element.Figure 19.6 Beam deflection due to self-weight.Figure 19.7 Generalised illustration of optical bench distortion.Figure 19.8 Self-deflection induced aberration in fused silica mirror.Figure 19.9 Impact of vacuum window deformation.Figure 19.10 Mirror supported by a ring mount.Figure 19.11 Impact of support ring position on mirror deflection.Figure 19.12 (a) Mirror vee block support (b) Mirror belt support.Figure 19.13 Lens mounting in a lens barrel.Figure 19.14 Composite optical bench.Figure 19.15 Compliance of radiused retainer.Figure 19.16 Simple rectangular mesh.Figure 19.17 Meshing structure for simple barrel-mounted lens.

20 Chapter 20Figure 20.1 The generation of spherical surfaces by grinding.Figure 20.2 Typical grinding process for single piece.Figure 20.3 Blocking process.Figure 20.4 Subsurface damage following grinding.Figure 20.5 Polishing process (for spherical components).Figure 20.6 Continuous lap polishing of flats.Figure 20.7 Test plate interferogram.Figure 20.8 Simplified process flow for grinding and polishing.Figure 20.9 Relative cost vs form accuracy.Figure 20.10 Subaperture polishing process.Figure 20.11 Magneto-rheological polishing.Figure 20.12 Ion beam figuring.Figure 20.13 Five axis diamond machining tool.Figure 20.14 Single point diamond turning process.Figure 20.15 Surface texture generated during single point diamond machining....Figure 20.16 Raster flycutting.Figure 20.17 Replication of micro-optics. (a) Mould application (b) Pressing (...Figure 20.18 Lens edging in a bell chuck.Figure 20.19 Lens centring in a chuck.Figure 20.20 Bonding of doublets.Figure 20.21 PSD spectra for polished and diamond machined components.Figure 20.22 Designation for surface texture.Figure 20.23 Example drawing. *P4 designates a polished surface whose quality ...

21 Chapter 21Figure 21.1 Schematic diagram of lens barrel mounting.Figure 21.2 Active lens centring.Figure 21.3 Kinematic constraints.Figure 21.4 Kinematic mount example.Figure 21.5 Gimbal mechanism.Figure 21.6 Mirror mount with flexures.Figure 21.7 Example of a hexapod mount.Figure 21.8 General layout of a linear stage.Figure 21.9 Types of linear slide.Figure 21.10 Inchworm piezoelectric drive.Figure 21.11 Isostatic mounting arrangement.Figure 21.12 Flexure linkages.Figure 21.13 Hindle mount.Figure 21.14 Transmission spectrum for acrylic adhesive (Norland NOA 61).Figure 21.15 Opto-electronic component bonding and alignment.Figure 21.16 Simple laboratory alignment process.Figure 21.17 Principle of autocollimator.Figure 21.18 Use of interferometer or autocollimator in co-alignment of plane ...Figure 21.19 Spot centroiding.Figure 21.20 Alignment process with beamsplitter.Figure 21.21 Double pass interferometry.Figure 21.22 Cleanliness levels according to IEST-STD-CC1246D.Figure 21.23 Impact of surface contamination on scattering.

22 Chapter 22Figure 22.1 Background vibration levels in some environments.Figure 22.2 Vibration transmission for a typical passive isolation system.Figure 22.3 Typical transport environment vibrational load.Figure 22.4 Temperature cycling profile for NIRSPEC integral field unit (IFU) ...Figure 22.5 Focal length determination with precision collimator.Figure 22.6 Nodal point location.Figure 22.7 Nodal slide arrangement.Figure 22.8 Interferometric measurement of focal length.Figure 22.9 Interferometric measurement of focal length with axial adjustment....Figure 22.10 Schematic of linear encoder.Figure 22.11 Goniometer arrangement.Figure 22.12 Precision angle measurement of prisms by interferometry.Figure 22.13 Detector flat fielding.Figure 22.14 Measurement of spectral irradiance.Figure 22.15 Silicon photodiode temperature sensitivity vs. wavelength.Figure 22.16 Layout of spectrophotometer.Figure 22.17 Measurement of birefringence and stress-induced birefringence.Figure 22.18 Measurement of refractive index through minimum deviation.

Optical Engineering Science

Подняться наверх