Читать книгу GANs mit PyTorch selbst programmieren - Tariq Rashid - Страница 8
KAPITEL 1 Grundlagen von PyTorch
ОглавлениеIn meinem letzten Buch Neuronale Netze selbst programmieren haben wir einfache, aber effektive neuronale Netze erstellt, und zwar ausschließlich mit Python und der Bibliothek NumPy für das Verarbeiten von Datenarrays.
Auf beliebte Frameworks wie PyTorch und TensorFlow für das Erstellen von neuronalen Netzen haben wir verzichtet, weil es wichtig war, die Netze von Grund auf neu aufzubauen, um ihre Funktionsweise wirklich zu verstehen.
Diese ganze Arbeit, die wir zu Fuß erledigen mussten, macht deutlich, dass der Aufbau größerer Netzwerke eine mühsame Aufgabe werden könnte. Einer der aufwendigsten Bereiche ist die Berechnung der Beziehung zwischen dem Fehler, der durch Backpropagation zurückgegeben wurde, und den Gewichten in unserem Netz. Wenn wir das Netz verändern, müssen wir möglicherweise die gesamte Arbeit noch einmal absolvieren.
Hier werden wir PyTorch einsetzen, weil uns diese Bibliothek eine Menge Routinearbeiten abnimmt, sodass wir uns auf den Entwurf unserer Netze konzentrieren können.
Zu den leistungsfähigsten und komfortabelsten Features von PyTorch gehört, dass die Bibliothek sämtliche Berechnungen für uns erledigt, egal welche Gestalt oder Größe das Netz hat, das wir uns ausdenken. Und wenn wir das Design unseres Netzes verändern, passt PyTorch die Berechnungen automatisch an, ohne dass wir Bleistift und Papier auspacken müssen, um die Gradienten erneut zu berechnen.
Außerdem hat man sich bei PyTorch wirklich sehr darum bemüht, dem Look-and-feel von normalem Python zu entsprechen. Das bedeutet, es ist leicht zu erlernen, wenn Sie Python bereits kennen, und es gibt weniger Überraschungen, wenn Sie damit arbeiten.