Читать книгу Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет - Терренс Сейновски - Страница 15
Часть I. Переосмысление интеллекта: хронология
Глава 1. Развитие машинного обучения
Назад в будущее
ОглавлениеРазличные формы обучения позволяют работать всем вышеупомянутым приложениям. Кроме того, глубокое обучение – основа и для человеческого интеллекта. Эта книга посвящена двум взаимосвязанным темам – эволюции человеческого мозга и эволюции ИИ. Самое заметное различие: природа потратила миллионы лет на развитие человеческого интеллекта, в то время как ИИ на это понадобилось всего несколько десятилетий – слишком короткий срок даже для культурной эволюции.
Последние достижения глубокого обучения были сделаны не в одночасье, как может показаться по сообщениям в СМИ. История перехода ИИ, основывавшегося на символах, логике и системе правил, к глубокому обучению малоизвестна. Эта книга о появлении и развитии глубокого обучения с моей точки зрения как того, кто стоял у истоков разработки алгоритмов обучения нейронных сетей в 1980-х годах и в качестве президента Фонда Neural Information Processing Systems[44] (NIPS) курировал открытия в области машинного и глубокого обучения в течение последних 30 лет. Долгие годы нас преследовали неудачи, но в конце концов наши настойчивость и терпение были вознаграждены.
44
Нейронные системы обработки информации. Ранее была аббревиатура NIPS, в 2018 году ее сменили на NeurIPS. Так как данная книга была написана незадолго до переименования, в оригинале и в библиографических ссылках употребляется аббревиатура NIPS, которую мы и будем использовать далее во избежание путаницы. – Прим. ред.