Читать книгу Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет - Терренс Сейновски - Страница 9
Часть I. Переосмысление интеллекта: хронология
Глава 1. Развитие машинного обучения
Учим зарабатывать деньги
ОглавлениеБолее 75 процентов торговых сделок на Нью-йоркской фондовой бирже автоматизированы (рис. 1.6) и проводятся благодаря высокоскоростным алгоритмам, которые реагируют гораздо быстрее человека. Более того, алгоритмы начинают зарабатывать деньги все лучше и лучше, а глубокое обучение позволяет систематически увеличивать прибыль. В 1980-х я работал в компании Morgan Stanley консультантом по использованию нейросетей на фондовых биржах и встретил там Дэвида Шоу, программиста из Колумбийского университета, который специализировался на параллельных вычислениях. На заре автоматической торговли он работал в отделе количественного анализа данных даже во время отпуска. Когда вам не нужно платить за каждую транзакцию, даже незначительное преимущество может превратиться в крупную прибыль. Шоу ушел из Morgan Stanley, чтобы создать свою компанию по управлению инвестициями на Уолл-стрит – The D. E. Shaw Group. Сейчас он мультимиллиардер.
Компания Шоу достигла значительного успеха, однако ей далеко до страхового фонда Renaissance Technologies, основанного Джеймсом Саймонсом, выдающимся математиком и бывшим заведующим кафедрой математики Университета штата Нью-Йорк в Стоуни-Брук. В 2016 году Саймонс в одиночку заработал 1,6 миллиарда долларов[21], и это далеко не самая большая его прибыль. Фонд Renaissance был назван «компанией с лучшими физиками и математиками в мире»[22], которая «избегает нанимать любого, кто связан с Уолл-стрит»[23].
Дэвид Шоу больше не занимается повседневной работой в D. E. Shaw, сейчас он поглощен проектом D. E. Shaw Research по созданию компьютера для параллельных вычислений под названием Anton, который выполняет расчет сворачивания белка гораздо быстрее, чем любой другой компьютер на планете[24]. Саймонс ушел из Renaissance и вместе со своей женой основал благотворительный фонд, который поддерживает исследование аутизма и другие проекты по физике и биологии. Фонд спонсирует работу Института теории вычислений Саймонса в Беркли в Калифорнии, Центра социального мозга Саймонса при Массачусетском технологическом институте[25], а также Института Флэтайрон в Нью-Йорке.
Рис. 1.6. Машинное обучение управляет высокоскоростной торговлей на фондовых рынках. Для достижения наилучшего результата совмещают несколько моделей машинного обучения[26]
Глубокое обучение только начинает влиять на труд юристов. Большая часть рутинной работы в юридических организациях, стоящая сотни долларов в час, будет автоматизирована, особенно в крупных компаниях. В частности, ИИ, не чувствуя усталости, может выполнять анализ тысяч документов в поисках доказательств[27]. Еще одно преимущество автоматизированной системы – полное соблюдение постоянно усложняющихся нормативных требований. Юридическая консультация станет доступна любому, кто не может себе позволить нанять адвоката. Работа юристов станет не только дешевле, но и гораздо быстрее, а этой порой важнее стоимости. Правовой мир станет юридически глубоким.
21
Sei Chong, Morning Agenda: Big Pay for Hedge Fund Chiefs Despite a Rough Year, New York Times May 16, 2017 www.nytimes.com/2017/05/16/business/dealbook/hedge-funds-amazon-bezos.html
22
За исключением Агентства Национальной Безопасности, в числе сотрудников которого – сотни математиков (Alfred W. Hales, personal communication). – Прим. авт.
23
Сарфраз Манзур. «Гении математики работают на Уолл-стрит. Биржевые маклеры остаются без работы, так как их заменят гении математики, использующие сверхсовременные компьютеры. Но во благо ли это или во вред?» The Telegraph, 23 июля 2013 года.
24
Shaw D. E.; Chao Jack C.; Eastwood Michael P.; Gagliardo Joseph; Grossman J. P.; Ho C. Richard; Ierardi Douglas J.; Kolossváry István; et al. (May 2007). «Anton – компьютер для моделирования молекулярной динамики». International Symposium on Computer Architecture: Proceedings of the 34th annual international symposium on Computer architecture. ACM. 35 (2).
25
Далее – МТИ.
26
Ян Эллисон. «Бывший физик-ядерщик Анри Вельбрук объясняет, как машинное обучение снижает риск высокочастотной торговли», International Business Times, 23 марта 2016 г. www.ibtimes.co.uk/formernuclear-physicist-henri-waelbroeck-explains-how-machine-learning-mitigates-high-frequency1551097
27
Такой подход уже получил имя «электронное расследование» (также «автоматизированный анализ», или technology-assisted review, TAR) – автоматизированный сбор и анализ цифровой информации, релевантной для конкретного судебного процесса. – Прим. ред.